[1] Fuglsig JMCES, Reis INRD, Yeung AWK, et al.The current role and future potential of digital diagnostic imaging in implant dentistry: a scoping review[J]. Clin Oral Implants Res, 2024, 35(8): 793-809. [2] Nemtoi A, Czink C, Haba D, et al.Cone beam CT: a current overview of devices[J]. Dentomaxillofac Radiol, 2013, 42(8): 20120443. [3] Kaasalainen T, Ekholm M, Siiskonen T, et al.Dental cone beam CT: an updated review[J]. Phys Med, 2021, 88: 193-217. [4] Harris D, Horner K, Gröndahl K, et al.E.A.O. guidelines for the use of diagnostic imaging in implant dentistry 2011. a consensus workshop organized by the European Association for Osseointegration at the Medical University of Warsaw[J]. Clin Oral Implants Res, 2012, 23(11): 1243-1253. [5] Pauwels R, Araki K, Siewerdsen JH, et al.Technical aspects of dental CBCT: state of the art[J]. Dentomaxillofac Radiol, 2015, 44(1): 20140224. [6] Ludlow JB, Timothy R, Walker C, et al.Effective dose of dental CBCT-a meta analysis of published data and additional data for nine CBCT units[J]. Dentomaxillofac Radiol, 2015, 44(1): 20140197. [7] Li Y, Deng S, Mei L, et al.Accuracy of alveolar bone height and thickness measurements in cone beam computed tomography: a systematic review and meta-analysis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 128(6): 667-679. [8] Mozzo P, Procacci C, Tacconi A, et al.A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results[J]. Eur Radiol, 1998, 8(9): 1558-1564. [9] Cassetta M, Altieri F, Giansanti M, et al.Is there a learning curve in static computer-assisted implant surgery? a prospective clinical study[J]. Int J Oral Maxillofac Surg, 2020, 49(10): 1335-1342. [10] Li Y, Wang P, Zhang J, et al.Multiparametric framework magnetic resonance imaging assessment of subtypes of intracranial germ cell tumors using susceptibility weighted imaging, diffusion-weighted imaging, and dynamic susceptibility-contrast perfusion-weighted imaging combined with conventional magnetic resonance imaging[J]. J Magn Reson Imaging, 2022, 56(4):1232-1242. [11] Jang TJ, Kim KC, Cho HC, et al.A fully automated method for 3D individual tooth identification and segmentation in dental CBCT[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10): 6562-6568. [12] Hyun CM, Bayaraa T, Yun HS, et al.Deep learning method for reducing metal artifacts in dental cone-beam CT using supplementary information from intra-oral scan[J]. Phys Med Biol, 2022, 67(17): 175007. [13] AbuSalim S, Zakaria N, Islam MR, et al. Analysis of deep learning techniques for dental informatics: a systematic literature review[J]. Healthcare (Basel), 2022, 10(10): 1892. [14] Ladefoged CN, Andersen FL, Andersen TL, et al.DeepDixon synthetic CT for[18F] FET PET/MRI attenuation correction of post-surgery glioma patients with metal implants[J]. Front Neurosci, 2023, 17: 1142383. [15] Steigmann L, Di Gianfilippo R, Steigmann M, et al.Classification based on extraction socket buccal bone morphology and related treatment decision tree[J]. Materials (Basel), 2022, 15(3):733. [16] Kwon O, Yong TH, Kang SR, et al.Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network[J]. Dentomaxillofac Radiol, 2020, 49(8): 20200185. [17] Kirillov A, Mintun E, Ravi N, et al.Segment anything[C]. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023: 3992-4003. [18] He K, Chen X, Xie S, et al.Masked autoencoders are scalable vision learners[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 15979-15988. [19] Shan T, Tay FR, Gu L.Application of artificial intelligence in dentistry[J]. J Dent Res, 2021, 100(3): 232-244. [20] 汪林,郭亚霖,刘洪臣.人工智能在牙体牙髓病学中的应用[J]. 中华老年口腔医学杂志, 2022, 20(6): 321-326. [21] Trelenberg-Stoll V, Drescher D, Wolf M, et al.Automated tooth segmentation as an innovative tool to assess 3D-tooth movement and root resorption in rodents[J]. Head Face Med, 2021, 17(1): 3. [22] Hapca SM, Houston AN, Otten W, et al.New local thresholding method for soil images by minimizing grayscale intra-class variance[J]. Vadose Zone J, 2013, 12(3): 1712-1717. [23] Jiang B, Zhang Y, Tang X, et al.Region growing model with edge restrictions for multiple roots tooth segmentation[C]. ISICDM 2019: Proceedings of the Third International Symposium on Image Computing and Digital Medicine, 2019: 171-174. [24] Wu X, Chen H, Huang Y, et al.Center-sensitive and boundary-aware tooth instance segmentation and classification from cone-beam CT[C]. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020: 939-942. [25] Polizzi A, Quinzi V, Ronsivalle V, et al.Tooth automatic segmentation from CBCT images: a systematic review[J]. Clin Oral Investig, 2023, 27(7): 3363-3378. [26] Mazurowski MA, Dong H, Gu H, et al.Segment anything model for medical image analysis: an experimental study[J]. Med Image Anal, 2023, 89: 102918. [27] Sabri H, Barootchi S, Heck T, et al.Single-rooted extraction socket classification: a systematic review and proposal of a new classification system based on morphologic and patient-related factors[J]. J Esthet Restor Dent, 2023, 35(1): 168-182. |