[1] Ingber DE.Mechanical control of tissue growth: function follows form[J]. Proc Natl Acad Sci USA, 2005, 102(33): 11571-11572. [2] Judex S, Gupta S, Rubin C.Regulation of mechanical signals in bone[J]. Orthod Craniofac Res, 2009, 12(2): 94-104. [3] Suenaga H, Yokoyama M, Yamaguchi K, et al.Bone metabolism of residual ridge beneath the denture base of an RPD observed using NaF-PET/CT[J]. J Prosthodont Res, 2012, 56(1): 42-46. [4] Ozcivici E, Luu YK, Rubin CT, et al.Low-level vibrations retain bone marrow's osteogenic potential and augment recovery of trabecular bone during reambulation[J]. PLoS One, 2010, 5(6): e11178. [5] Kelly DJ, Jacobs CR.The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells[J]. Birth Defects Res C Embryo Today, 2010, 90(1): 75-85. [6] Rubin C, Turner AS, Bain S, et al.Anabolism. low mechanical signals strengthen long bones[J]. Nature, 2001, 412(6847): 603-604. [7] Ota T, Chiba M, Hayashi H.Vibrational stimulation induces osteoblast differentiation and the upregulation of osteogenic gene expression in vitro [J]. Cytotechnology, 2016, 68(6): 2287-2299. [8] Ogawa T, Possemiers T, Zhang X, et al.Influence of whole-body vibration time on peri-implant bone healing: a histomorp hometrical animal study[J]. J Clin Periodontol, 2011, 38(2): 180-185. [9] Ogawa T, Zhang X, Naert I, et al.The effect of whole-body vibration on peri-implant bone healing in rats[J]. Clin Oral Implants Res, 2011, 22(3): 302-307. [10] Zhang X, Torcasio A, Vandamme K, et al.Enhancement of implant osseointegration by high-frequency low-magnitude loading[J]. PLoS One, 2012, 7(7): e40488. [11] Ogawa T, Vandamme K, Zhang X, et al.Stimulation of titanium implant osseointegration through high-frequency vibration loading is enhanced when applied at high acceleration[J]. Calcif Tissue Int, 2014, 95(5): 467-475. [12] Liang YQ, Qi MC, Xu J, et al.Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats[J]. Mol Med Rep, 2014, 10(6): 2835-2842. [13] Sanz-Martin I, Vignoletti F, Nuñez J, et al.Hard and soft tissue integration of immediate and delayed implants with a modified coronal macrodesign: histological, micro-CT and volumetric soft tissue changes from a pre-clinical in vivo study[J]. J Clin Periodontol, 2017, 44(8): 842-853. [14] Rand A, Stiesch M, Eisenburger M, et al.The effect of direct and indirect force transmission on peri-implant bone stress-a contact finite element analysis[J]. Comput Methods Biomech Biomed Engin, 2017, 20(10): 1132-1139. [15] Glauser R, Sennerby L, Meredith N, et al.Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading. Successful vs. failing implants[J]. Clin Oral Implants Res, 2004, 15(4): 428-434. [16] Shibamoto A, Ogawa T, Duyck J, et al.Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration[J]. Int J Oral Sci, 2018, 10(1): 6-12. [17] Yoon HG, Heo SJ, Koak JY, et al.Effect of bone quality and implant surgical technique on implant stability quotient (ISQ) value[J]. J Adv Prosthodont, 2011, 3(1): 10-15. [18] Gehrke SA, Pérez-Albacete Martínez C, Piattelli A, et al. The influence of three different apical implant designs at stability and osseointegration process: experimental study in rabbits[J]. Clin Oral Implants Res, 2017, 28(3): 355-361. [19] Yamamoto M, Ogawa T, Yokoyama M, et al.Influence of immediate and early loading on bone metabolic activity around dental implants in rat tibiae[J]. Clin Oral Implants Res, 2014, 25(9): 1084-1090. |