[1] 崔云霞, 李保胜, 韩春雨, 等. 生物可降解医用镁合金应用于骨缺损修复中的研究展望[J]. 现代口腔医学杂志, 2019, 33(1): 46-49. [2] 张竞心, 刘林枫, 张士文, 等. 镁离子促进骨再生的分子机制[J]. 中国组织工程研究, 2022, 26(33): 5384-5392. [3] Chen Y, Dou J, Yu H, et al.Degradable magnesium-based alloys for biomedical applications: the role of critical alloying elements[J]. J Biomater Appl, 2019, 33(10): 1348-1372. [4] 施泽文, 刘辰, 陈先军, 等. 表面改性可降解镁的生物性能及其在骨修复领域的应用[J]. 国际骨科学杂志, 2021, 42(4): 226-230. [5] Chen J, Xu Y, Kolawole S, et al.Systems, properties, surface modification and applications of biodegradable magnesium-based alloys: a review[J]. Materials (Basel), 2022, 15(14): 5301-5317. [6] Rider P, Kacarevic Z, Elad A, et al.Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery[J]. Bioact Mater, 2022, 14: 152-168. [7] Bairagi D, Mandal S.A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: current status, challenges, and future prospects[J]. J Magnesium and Alloys, 2022, 10(3): 627-669. [8] Guo X, Hu Y, Yuan K, et al.Review of the effect of surface coating modification on magnesium alloy biocompatibility[J]. Materials (Basel), 2022, 15(9): 3291-3309. [9] Wang P, Liu DX, Li J, et al.Growth process and corrosion resistance of micro-arc oxidation coating on Mg-Zn-Gd magnesium alloys[J]. Trans Nonferrous Met Soc China, 2010, 20(11): 2198-2203. [10] Gao Y L, Liu Y, Song X.Plasma-sprayed hydroxyapatite coating for improved corrosion resistance and bioactivity of magnesium alloy[J]. J Therm Spray Technol, 2018, 27(8): 1381-1387. [11] Zhang H, Jiang H, Kim J, et al.Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration[J]. J Mech Behav Biomed Mater, 2020, 112: 104061. [12] Si J, Shen H, Miao H, et al.In vitro and in vivo evaluations of Mg-Zn-Gd alloy membrane on guided bone regeneration for rabbit calvarial defect[J]. J Magnes Alloys, 2021, 9(1): 281-291. [13] Wang Y, Wu H, Wang Z, et al.Optimized synthesis of biodegradable elastomer PEGylated poly(glycerol sebacate) and their biomedical application[J]. Polymers (Basel), 2019, 11(6): 965-982. [14] Yu S, Shi J, Liu Y, et al.Mechanically robust and flexible PEGylated poly(glycerol sebacate)/β-TCP nanoparticles composite membrane for guided bone regeneration[J]. J Mater Chemist B, 2019, 7: 3279-3290. [15] 刘印, 马敏先. 镁离子在骨再生应用的研究进展[J]. 生物医学工程与临床, 2021, 25(4): 522-526. [16] Xie K, Wang N, Guo Y, et al.Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: an in vitro and in vivo study[J]. Bioact Mater, 2021, 8: 140-152. [17] Miao H, Zhang D, Chen C, et al.Research on biodegradable Mg-Zn-Gd alloys for potential orthopedic implants: in vitro and in vivo evaluations[J]. ACS Biomater Sci Eng, 2019, 5(3): 1623-1634. [18] Zhao M, Liu G, Li Y, et al.Degradation behavior, transport mechanism and osteogenic activity of Mg-Zn-RE alloy membranes in critical-sized rat calvarial defects[J]. Coatings, 2020, 10(5): 496-512. [19] Ashassi-Sorkhabi H, Moradi-Alavian S, Kazempour A.Salt-nanoparticle systems incorporated into sol-gel coatings for corrosion protection of AZ91 magnesium alloy[J]. Prog Org Coat, 2019, 135: 475-482. [20] Wang Z, Liu Q, Liu C, et al.Mg2+ in beta-TCP/Mg-Zn composite enhances the differentiation of human bone marrow stromal cells into osteoblasts through MAPK-regulated Runx2/Osx[J]. J Cell Physiol, 2020, 235(6): 5182-5191. [21] Ma Y, Zhang C, Wang Y, et al.Direct three-dimensional printing of a highly customized freestanding hyperelastic bioscaffold for complex craniomaxillofacial reconstruction[J]. Chem Eng J, 2021, 411: 128541. [22] Lin Z, Wu J, Qiao W, et al.Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration[J]. Biomaterials, 2018, 174: 1-16. [23] Yang C, Yuan G, Zhang J, et al.Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation[J]. Biomed Mater, 2010, 5(4): 045005. [24] Wong H, Wu S, Chu P, et al.Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation[J]. Biomaterials, 2013, 34(29): 7016-7032. [25] Liu C, Yang G, Zhou M, et al.Magnesium ammonium phosphate composite cell-laden hydrogel promotes osteogenesis and angiogenesis in vitro[J]. ACS omega, 2021, 6(14): 9449-9459. [26] Zhang X, Huang P, Jiang G, et al.A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis[J]. Mate Sci Eng C Mater Biol Appl, 2021, 121: 111868. [27] Shen H, Zhang C, Zhang C, et al.A novel immunoregulatory PEGylated poly(glycerol sebacate)/β-TCP membrane for application in guided bone regeneration[J]. Adv Mater Inter, 2021, 9: 2101218. [28] Costantino M, Schuster A, Helmholz H, et al.Inflammatory response to magnesium-based biodegradable implant materials[J]. Acta Biomater, 2020, 101: 598-608. [29] Bessa-Gonçalves M, Silva AM, Brás JP, et al.Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells[J]. Acta Biomater, 2020, 114: 471-484. [30] Bessa-Gonçalves M, Ribeiro-Machado C, Costa M, et al.Magnesium incorporation in fibrinogen scaffolds promotes macrophage polarization towards M2 phenotype[J]. Acta Biomater, 2023, 155: 667-683. [31] Sun Y, Yu H, Peng H, et al.Degradation particles derived from high-purity magnesium inhibit osteogenic differentiation through regulation of macrophage polarization[J]. J Mater Sci Tech, 2023, 139: 113-119. |