[1] Holzapfel BM, Rudert M, Hutmacher DW.Scaffold-based bone tissue engineering[J]. Orthopade, 2017, 46(8): 701-710. [2] Luo C, Fang H, Zhou M, et al.Biomimetic open porous structured core-shell microtissue with enhanced mechanical properties for bottom-up bone tissue engineering[J]. Theranostics, 2019, 9(16): 4663-4677. [3] Wang C, Huang W, Zhou Y, et al.3D printing of bone tissue engineering scaffolds[J]. Bioact Mater, 2020, 5(1): 82-91. [4] Haleem A, Javaid M, Khan RH, et al.3D printing applications in bone tissue engineering[J]. J Clin Orthop Trauma, 2020, 11(Suppl 1): S118-S124. [5] 张海峰, 杜子婧, 毛曦媛, 等. 3D打印PLA-HA复合材料构建组织工程骨的实验研究[J]. 国际骨科学杂志, 2016, 37(1): 57-63. [6] Biondi M, Ungaro F, Quaglia F, et al.Controlled drug delivery in tissue engineering[J]. Adv Drug Deliv Rev, 2008, 60(2): 229-242. [7] Przekora A.The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications[J]. Mater Sci Eng C Mater Biol Appl, 2019, 97: 1036-1051. [8] Jäger M, Jelinek EM, Wess KM, et al.Bone marrow concentrate: a novel strategy for bone defect treatment[J]. Curr Stem Cell Res Ther, 2009, 4(1): 34-43. [9] Park MS, Kim YH, Jung Y, et al.In situ recruitment of human bone marrow-derived mesenchymal stem cells using chemokines for articular cartilage regeneration[J]. Cell Transplant, 2015, 24(6): 1067-1083. [10] Zeng JH, Liu SW, Xiong L, et al.Scaffolds for the repair of bone defects in clinical studies: a systematic review[J]. J Orthop Surg Res, 2018, 13(1): 33-41. [11] Bidarra SJ, Barrias CC, Barbosa MA, et al.Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells[J]. Stem Cell Res, 2011, 7(3): 186-197. [12] Grellier M, Ferreira-Tojais N, Bourget C, et al.Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells[J]. J Cell Biochem, 2009, 106(3): 390-398. [13] Gershovich JG, Dahlin RL, Kasper FK, et al.Enhanced osteogenesis in cocultures with human mesenchymal stem cells and endothelial cells on polymeric microfiber scaffolds[J]. Tissue Eng Part A, 2013, 19(23-24): 2565-2576. [14] 汪川, 李京倖, 辛毅, 等. 人脱细胞脐动脉支架与兔骨髓内皮祖细胞构建组织工程血管的实验研究[J]. 心肺血管病杂志, 2014, 33(4): 586-591. [15] 杨兴华, 彭琳, 韩晓燕, 等. 口腔颌面组织工程血管的初步构建[J]. 中国组织工程研究, 2017, 21(4): 545-550. [16] Saleh FA, Whyte M, Genever PG.Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model[J]. Eur Cell Mater, 2011, 22: 242-257. [17] 雷蕾. FGF-2和BMP-2诱导低密度人骨髓间充质干细胞(hMSCs)成骨分化的协调机制研究 [D]. 长沙: 中南大学, 2014. [18] 徐娟, 胡敏. 钛合金表面改性与骨结合能力的研究进展[J]. 中华老年口腔医学杂志, 2013, 11(2): 119-122. [19] Chen Q, Zou B, Lai Q, et al.A study on biosafety of HAP ceramic prepared by SLA-3D printing technology directly[J]. J Mech Behav Biomed Mater, 2019, 98: 327-335. [20] Wei G, Ma PX.Structure and properties of nano-hydroxyapatite /polymer composite scaffolds for bone tissue engineering[J]. Biomaterials, 2004, 25(19): 4749-4757. [21] 窦晓晨, 李全利, 周健, 等. 新型抗菌纳米复合HA-Gel骨修复材料的仿生合成及细胞相容性研究[J]. 上海口腔医学, 2010, 19(3): 285-289. [22] Panda NN, Jonnalagadda S, Pramanik K.Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering[J]. J Biomater Sci Polym Ed, 2013, 24(18): 2031-2044. [23] Kankala Ranjith Kumar, Xu Xiao-Ming, Liu Chen-Guang, et al.3D- printing of microfibrous porous scaffolds based on hybrid approaches for bone tissue engineering[J]. Polymers(Basel), 2018, 10(7): 807-818. [24] 耿海霞, 郭秀娟, 钱君荣, 等. HAP-GEL支架复合成骨细胞修复兔颅骨缺损的实验研究[J]. 上海口腔医学, 2014, 23(5): 539-542. [25] 金灿, 陈振琦. 应用3D打印技术制作组织工程支架:修复骨缺损的研究回顾[J]. 中国组织工程研究, 2017, 21(10): 1611-1616. [26] Zhang L, Yang G, Johnson BN, et al.Three-dimensional (3D) printed scaffold and material selection for bone repair[J]. Acta Biomater, 2019, 84(1): 16-33. [27] Kim BS, Yang SS, Kim CS.Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering[J]. Colloids Surf B Biointerfaces, 2018, 170: 421-429. [28] Kim H, Yang GH, Choi CH, et al.Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations[J]. Int J Biol Macromol, 2018, 120(Pt A) : 119-127. |