[1] 许竞, 崔宝仪, 高文峰, 等. 即刻种植牙龈软组织伤口的特点及其愈合方式[J]. 广东医学, 2013, 34(7): 1066-1069. [2] Silva CO, Ribeiro EDP, Sallum AW, et al.Free gingival grafts: graft shrinkage and donor-site healing in smokers and non-smokers[J]. J Periodontol, 2010, 81(5): 692-701. [3] Lee K, Ben Amara H, Lee SC, et al.Chemical regeneration of wound defects: relevance to the canine palatal mucosa and cell cycle up-regulation in human gingival fibroblasts[J]. Tissue Eng Regen Med, 2019, 16(6): 675-684. [4] Amrollahi P, Shah B, Seifi A, et al.Recent advancements in regenerative dentistry: a review[J]. Mater Sci Eng C Mater Biol Appl, 2016, 69: 1383-1390. [5] Kalwitz G, Endres M, Neumann K, et al.Gene expression profile of adult human bone marrow-derived mesenchymal stem cells stimulated by the chemokine CXCL7[J]. Int J Biochem Cell Biol, 2009, 41(3): 649-658. [6] Cordeiro JV, Jacinto A.The role of transcription-independent damage signals in the initiation of epithelial wound healing[J]. Nat Rev Mol Cell Biol, 2013, 14(4): 249-262. [7] Grieb G, Steffens G, Pallua N, et al.Circulating fibrocytes-biology and mechanisms in wound healing and scar formation[J]. Int Rev Cell Mol Biol, 2011, 291: 1-19 [8] Kundu B, Rajkhowa R, Kundu SC, et al.Silk fibroin biomaterials for tissue regenerations[J]. Adv Drug Deliv Rev, 2013, 65(4): 457-470. [9] Yan LP, Oliveira JM, Oliveira AL, et al.Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications[J]. Acta Biomater, 2012, 8(1): 289-301. [10] Zha E, Gao S, Pi Y, et al.Wound healing by a 3.2 kDa recombinant polypeptide from velvet antler of cervusnippon temminck[J]. Biotechnol Lett, 2012, 34(4): 789-793. [11] 牛琼, 杨欣建, 牛黎军. 鹿茸多肽促进皮肤创面愈合的实验研究[J]. 现代中西医结合杂志, 2012, 21(16): 1732-1733. [12] Guan SW, Duan LX, Li YY, et al.A novel polypeptide from Cervus nippon Temminck proliferation of epidermal cells and NIH3T3 cell line[J]. Acta Biochim Pol, 2006, 53(2): 395-407. [13] Yun C, Qian W, Wu J, et al.Pilose antler peptide promotes osteoblast proliferation, differentiation and mineralization via the insulin signaling pathway[J]. Exp Ther Med, 2020, 19(2): 923-930. [14] Lu LJ, Chen L, Meng XT, et al.Biological effect of velvet antler polypeptides on neural stem cells from embryonic rat brain[J]. Chin Med J, 2005, 118(1): 38-42. [15] 张郑瑶, 王晓龙, 赵长伟, 等. 梅花鹿鹿茸多肽对小鼠ADSCs迁移、黏附活性及增殖的影响[J]. 农业生物技术学报, 2017, 25(7): 1154-1161. [16] 李朝政, 许佳明, 王烨, 等. 鹿茸多肽诱导心肌干细胞分化作用及对心肌细胞特征性MHC基因表达的影响[J]. 吉林中医药, 2014, 34(8): 825-828. [17] 王艳玲, 黄晓巍, 李哲, 等. 鹿茸多肽诱导心肌干细胞向心肌细胞分化的机制研究[J]. 中国药房, 2016, 27(34): 4780-4783. [18] 张洪长, 张莹, 刘明昕, 等. 鹿茸多肽对人骨髓间充质干细胞BMP-2和Runx2 表达的影响[J]. 吉林大学学报(医学版), 2015, 41(3): 491-495. [19] Ren C, Gong W, Li F, et al.Pilose antler aqueous extract promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells by stimulating the BMP-2/Smad1, 5/Runx2 signaling pathway[J]. Chin J Nat Med, 2019, 17(10): 756-767. [20] Zhu W, Wang H, Zhang W, et al.Protective effects and plausible mechanisms of velvet polypeptide against hydrogen peroxide induced injury in human umbilical vein endothelial cells[J]. Can J Physiol Pharmacol, 2017, 95(5): 610-619. [21] Li S, He J.Pilose antler polypeptide protects against sevoflurane-mediated neurocyte injury[J]. Mol Med Rep, 2018, 18(6): 5353-5360. [22] Li C, Sun Y, Yang W, et al.Pilose antler extracts (PAEs) protect against neurodegeneration in 6-OHDA-induced Parkinson’s disease rat models[J]. Evid Based Complement Alternat Med, 2019(7): 7276407. [23] Wang J, Sun X, Zhang Z, et al.Silk fibroin/collagen/hyaluronic acid scaffold incorporating pilose antler polypeptides microspheres for cartilage tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94: 35-44. [24] 严铭铭, 曲晓波, 王旭, 等. 梅花鹿茸中活性多肽的纯化、测序及功能研究[J]. 高等学校化学学报, 2007, 28(10): 1893-1896. [25] Presland RB, Jurevic RJ.Making sense of the epithelial barrier: what molecular biology and genetics tell us about the functions of oral mucosal and epidermal tissues[J]. J Dent Educ, 2002, 66(4): 564-574. [26] Plikus MV, Gay DL, Treffeisen E, et al.Epithelial stem cells and implications for wound repair[J]. Semin Cell Dev Biol, 2012, 23(9): 946-953. [27] Woodley DT, Chen JD, Kim JP, et al.Re-epithelialization. Human keratinocyte locomotion[J]. Dermatol Clin, 1993, 11(4): 641-646. [28] Raja, Sivamani K, Garcia MS, et al. Wound re-epithelialization: modulating keratinocyte migration in wound healing[J]. Front Biosci, 2007, 12: 2849-2868. [29] Block ER, Tolino MA, Lozano JS, et al.Free edges in epithelial cell sheets stimulate epidermal growth factor receptor signaling[J]. Mol Biol Cell, 21(13): 2172-2181. [30] Badid C, Mounier N, Costa AM, et al.Role of myofibroblasts during normal tissue repair and excessive scarring: interest of their assessment in nephropathies[J]. Histol Histopathol, 2000, 15(1): 269-280. [31] Hinz B.Formation and function of the myofibroblast during tissue repair[J]. J Invest Dermatol, 2007, 127(3): 526-537. [32] Li B, Wang JHC.Fibroblasts and myofibroblasts in wound healing: force generation and measurement[J]. J Tissue Viability, 2011, 20(4): 108-120. [33] Kim KK, Sheppard D, Chapman HA.TGF-β1 signaling and tissue fibrosis[J]. Cold Spring Harb Perspect Biol, 2018,10(4): a022293. [34] Hozzein WN, Badr G, Al Ghamdi, et al.Topical application of propolis enhances cutaneous wound healing by promoting TGF-beta/Smad-mediated collagen production in a streptozotocin-induced type I diabetic mouse model[J]. Cell Physiol Biochem, 2015, 37(3): 940-954. [35] Wahedi HM, Jeong M, Chae JK, et al.Aloesin from aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo[J]. Phytomedicine, 2017, 28: 19-26. [36] Sabater AL, Andreu EJ, García-Guzmán M, et al.Combined PI3K/Akt and Smad2 activation promotes corneal endothelial cell proliferation[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 745-754. [37] Ruiz-Cañada C, Bernabé-García á, Liarte S, et al.Amniotic membrane stimulates cell migration by modulating transforming growth factor-β signalling[J]. J Tissue Eng Regen Med, 2018, 12(3): 808-820. |