[1] Iordanishvili AK, Chernyj DA, Jankovskij VV, et al.Prevalence of non-carious cervical lesions and abfractions of dental hard tissues in an adult in different ages[J]. Adv Gerontol, 2015, 28(2): 393-398. [2] 梁景平. 非龋性颈部缺损的研究进展[J]. 中华口腔医学杂志, 2020, 55(5): 323-328. [3] Sugita I, Nakashima S, Ikeda A, et al.A pilot study to assess the morphology and progression of non-carious cervical lesions[J]. J Dent,2017, 57: 51-56. [4] Hussain AS, Melibari R, Al Toubity.MJ, et al. Diagnosis of non-carious cervical lesions[J]. Clin Dent Rev, 2021, 5: 1-9. [5] Yang H, Park C, Shin JH, et al.Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis[J]. J Adv Prosthodont, 2018, 10(3): 184-190. [6] Çelik Köycü B, Īmirzalioglu P.Heat transfer and thermal stress analysis of a mandibular molar tooth restored by different indirect restorations using a three-dimensional finite element method[J]. Int J Prosthodont, 2017, 26(5): 460-473. [7] Chang WJ, Lin CL.Estimation of the retainer height biomechanical contribution in posterior resin-bonded fixed partial dentures: a structural-thermal coupled finite element analysis[J]. Med Biol Eng Comput, 2010, 48(11): 1115-1122. [8] 赵凌, 杨丽媛, 刘翠玲, 等. 不同修复方法对深型楔状缺损牙应力分布影响的三维有限元分析[J]. 华西口腔医学杂志, 2017, 35(1): 77-81. [9] Falakaloglu S, Adügüzel Ö, Özdemir G.Root canal reconstruction using biological dentin posts: a 3D finite element analysis[J]. J Dent Res Dent Clin Dent Prospect, 2019, 13(4): 274-280. [10] Soares PV, Santos-Filho PC, Soares CJ, et al.Non-carious cervical lesions: influence of morphology and load type on biomechanical behaviour of maxillary incisors[J]. Aust Dent J, 2013, 58(3): 306-314. [11] Pereira FA, Zeola LF, de Almeida Milito G, et al. Restorative material and loading type influence on the biomechanical behavior of wedge shaped cervical lesions[J]. Clin Oral Investig, 2016, 20(3): 433-441. [12] Munari LS, Cornacchia TPM, Moreira AN, et al.Stress distribution in a premolar 3D model with anisotropic and isotropic enamel[J]. Med Biol Eng Comput, 2015, 53(8): 751-758. [13] 马达, 唐亮, 潘燕环. 动态载荷下下前牙固定桥基牙牙周膜的三维有限元法分析[J]. 华西口腔医学杂志, 2007, 25(6): 591-594. [14] 张杨, 王超, 张晓南, 等. 动态载荷下不同骨质对天然牙-种植体联合修复应力分布的影响[J]. 华西口腔医学杂志, 2015, 33(3): 286-290. [15] 王谜, 刘定坤, 邹俊东, 等. 有限元法模拟下颌磨牙咀嚼载荷的研究进展[J]. 口腔医学, 2020, 40(7): 673-676. [16] 李晓宇, 左雯鑫, 朱啸, 等.连续动态加载下单种植体周围骨组织应力的三维有限元分析[J]. 实用口腔医学杂志, 2011, 27(1): 26-29. [17] 哈亚楠. 动态载荷下不同修复方式对后牙种植单冠应力分布影响的三维有限元分析[D]. 济南: 山东大学, 2019. [18] 邹英楠, 王屹博, 丁超, 等. 动态载荷下牙半切与种植体联合修复的三维有限元分析[J]. 中国组织工程研究, 2019, 23(2): 178-183. [19] 王滢铌, 荣起国. 静动载作用下牙冠的断裂失效模式[J]. 力学与实践, 2017, 39(5): 441-444. [20] 魏振辉, 孙贺婷, 高志银, 等. 不同材料高嵌体修复大面积缺损的上颌第一前磨牙有限元分析[J]. 口腔医学研究, 2020, 36(11): 1065-1068. [21] Guimarães JC, Guimarães Soella G, Brandão Durand L, et al.Stress amplifications in dental non-carious cervical lesions[J]. J Biomech, 2014, 47(2): 410-416. [22] Jakupovic S, Cerjakovic E, Topcic A, et al.Analysis of the abfraction lesions formation mechanism by the finite element method[J]. Acta Inform Med, 2014, 22(4): 241-245. [23] Dal Piva AMO, Tribst JPM, Borges ALS, et al.CAD-FEA modeling and analysis of different full crown monolithic restorations[J]. Dent Mater, 2018, 34(9): 1342-1350. [24] Nokar S, Bahrami M, Mostafavi AS.Comparative evaluation of the effect of different post and core materials on stress distribution in radicular dentin by three-dimensional finite element analysis[J]. J Dent (Tehran), 2018, 15(2): 69-78. [25] 沈晴昳, 王冬梅, 钟群, 等. 纤维桩复合树脂修复重度楔状缺损前磨牙的三维有限元分析[J]. 中国组织工程研究, 2014, 30(18): 4777-4782. |