[1] Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges [J]. Crit Rev Biomed Eng, 2012, 40(5): 363-408. [2] O'Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic-an overview [J]. Tissue Eng Part B Rev, 2011, 17(6): 389-392. [3] Langer R, Vacanti JP. Tissue engineering [J]. Science, 1993, 260(5110): 920-926. [4] Jakobsen C, S?尴rensen JA, Kassem M, et al. Mesenchymal stem cells in oral reconstructive surgery: a systematic review of the literature [J]. J Oral Rehabil, 2013, 40(9): 693-706. [5] Chadipiralla K, Yochim JM, Bahuleyan B, et al. Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth[J]. Cell Tissue Res, 2010, 340(2): 323-333. [6] ZigdonGiladi H, Khoury N, Evron A. Adult stem cells in the use of jaw bone regeneration: current and prospective research [J]. Quintessence Int, 2015, 46(2): 125-131. [7] MacHado E, Fernandes MH, SousaGomes P. Dental stem cells for craniofacial tissue engineering [J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012, 113(6): 728-733. [8] Edwards CM, Mundy GR. Eph receptors and ephrin signalling pathways: a role in bone homeostasis[J]. Int J Med Sci, 2008,5(5): 263-272. [9] Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth [J]. Proc Natl Acad Sci USA, 2003, 100(10): 5807-5812. [10] Farea M, Husein A, Halim AS, et al. Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth [J]. Arch Oral Biol, 2014, 59(12): 1400-1411. [11] Wang X, Sha XJ, Li GH, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells [J]. Arch Oral Biol, 2012, 57(9): 1231-1240. [12] Suchánek J, Visek B, Soukup T, et al. Stem cells from human exfoliated deciduous teeth-isolation, long term cultivation and phenotypical analysis [J]. Acta Medica (Hradec Kralove), 2010, 53(2): 93-99. [13] Behnia A, Haghighat A, Talebi A, et al. Transplantation of stem cells from human exfoliated deciduous teeth for bone regeneration in the dog mandibular defect [J]. World J Stem Cells, 2014, 6(4): 505-510. [14] Mundy GR, Elefteriou F. Boning up on ephrin signaling [J]. Cell, 2006, 126(3): 441-443. [15] Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis [J]. Cell Metab, 2006, 4(2): 111-121. [16] Takyar FM, Tonna S, Ho PW, et al. EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone [J]. J Bone Miner Res, 2013, 28(4): 912-925. [17] Tonna S, Takyar FM, Vrahnas C, et al.EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis [J]. FASEB J, 2014, 28(10): 4482-4496. [18] Ma X, Luo D, Li K, et al. Suppression of EphB4 improves the inhibitory effect of mTOR shRNA on the biological behaviors of ovarian cancer cells by down-regulating akt phosphorylation [J]. J Huazhong Univ Sci Technolog Med Sci, 2012, 32(3): 358-563. [19] Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease [J]. Cell, 2008, 133(1): 38-52. [20] Li C, Shi C, Kim J, et al. Erythropoietin promotes bone formation through EphB4/EphrinB2 signaling [J]. J Dent Res, 2015, 94(3): 455-463. [21] Tierney EG, McSorley K, Hastings CL, et al. High levels of ephrinB2 over-expression increases the osteogenic differentiation of human mesenchymal stem cells and promotes enhanced cell mediated mineralisation in a polyethyleneimine-ephrinB2 gene-activated matrix [J]. J Control Release, 2013, 165(3): 173-182. [22] Zhu SY, Wang PL, Liao CS, et al. Transgenic expression of ephrinB2 in periodontal ligament stem cells (PDLSCs) modulates osteogenic differentiation via signaling crosstalk between ephrinB2 and EphB4 in PDLSCs and between PDLSCs and pre-osteoblasts within co-culture[J].J Periodontal Res, 2017,52(3):562-573. |