[1] Wang L, Lu W, Qin J, et al.Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy[J]. Mater Sci Eng A, 2008, 490(1-2): 421-426. [2] Read SA, O'connor KS, Suppiah V, et al. Zinc is a potent and specific inhibitor of IFN-λ3 signalling[J]. Nat Commun, 2017, 8: 15245.e1-15245.e15. [3] Ryu JM, Lee MY, Yun SP, et al.Zinc chloride stimulates DNA synthesis of mouse embryonic stem cells: involvement of PI3K/Akt, MAPKs, and mTOR[J]. J Cell Physiol, 2010, 218(3): 558-567. [4] Huo K, Zhang X, Wang H, et al.Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays[J]. Biomaterials, 2013, 34(13): 3467-3478. [5] Mao C, Xiang Y, Liu X, et al.Photo-Inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures[J]. ACS Nano, 2017, 11(9): 9010-9021. [6] Zhao Q, Yi L, Jiang L, et al.Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation[J]. Nanomedicine, 2019, 16: 149-161. [7] Hu H, Zhang W, Qiao Y, et al.Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium[J]. Acta Biomater, 2012, 8(2): 904-915. [8] Shen X, Hu Y, Xu G, et al.Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium[J]. Acs Appl Mater Interfaces, 2014, 6(18): 16426-16440. [9] Hanawa T.Biofunctionalization of titanium for dental implant[J]. Jpn Dent Sci Rev, 2010, 46(2): 93-101. [10] Ding Z, Fan Q, Wang L.A review on friction stir processing of titanium alloy: characterization, method, microstructure, properties[J]. Metall Mater Trans B, 2019, 50(5): 2134-2162. [11] Zhu C, Lv Y, Qian C, et al.Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing[J]. Int J Nanomedicine, 2018, 13: 1881-1898. [12] Ran R, Liu Y, Wang L, et al.α″ martensite and amorphous phase transformation mechanism in TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing[J]. Metall Mater Trans A, 2018, 49: 1986-1991. [13] Cordeiro JM, Nagay BE, Ribeiro ALR, et al.Functionalization of an experimental Ti-Nb-Zr-Ta alloy with a biomimetic coating produced by plasma electrolytic oxidation[J]. J Alloys Compd, 2018, 770: 1038-1048. [14] Qiao Y, Zhang W, Tian P, et al.Stimulation of bone growth following zinc incorporation into biomaterials[J]. Biomaterials, 2014, 35(25): 6882-6897. [15] Xiang Y, Liu X, Mao C, et al.Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes[J]. Mater Sci Eng C Mater Biol Appl, 2018, 85: 214-224. [16] Liu P, Zhao Y, Yuan Z, et al.Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 998-1005. [17] 刘刚, 胡蕴玉, 赵建宁, 等. Ⅰ型胶原促进骨髓基质干细胞黏附的细胞机制[J]. 中华创伤骨科杂志, 2006, 8(6): 549-552. [18] Wang G, Li J, Zhang W, et al.Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function[J]. Int J Nanomedicine, 2014, 9: 2387-2398. [19] Qian C, Zhu C, Yu W, et al.High-fat diet/low-dose streptozotocin-induced type 2 diabetes in rats impacts osteogenesis and Wnt signaling in bone marrow stromal cells[J]. PLoS One, 2015, 10(8): e0136390. [20] Salasznyk RM, Williams WA, Boskey A, et al.Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells[J]. J Biomed Biotechnol, 2007, 2004(1): 24-34. [21] Yang Z, Gu H, Sha G, et al.TC4/Ag metal matrix nanocomposites modified by friction stir processing: surface characterization, antibacterial property, and cytotoxicity in vitro[J]. ACS Appl Mater Interfaces, 2018, 10(48): 41155-41166. [22] Gu H, Ding Z, Yang Z, et al. Microstructure evolution and electrochemical properties of TiO2/Ti-35Nb-2Ta-3Zr micro/nano-composites fabricated by friction stir processing [J]. Mater Des, 2019, 169: 107680.e1-107680.e15. [23] Popat KC, Swan EEL, Mukhatyar V, et al.Influence of nanoporous alumina membranes on long-term osteoblast response[J]. Biomaterials, 2005, 26(22): 4516-4522. [24] Wglowski MS.Friction stir processing technology-new opportunities[J]. Welding Int, 2014, 28(8): 583-592. |