[1] Fogel RB, Malhotra A, Shea SA, et al.Reduced genioglossal activity with upper airway anesthesia in awake patients with OSA[J]. J Appl Physiol, 2000, 88(4): 1346-1354. [2] Malhotra A, White DP.Obstructive sleep apnoea[J]. Lancet, 2002, 360(9328): 237-245. [3] Bradford A, Mcguire M, O'Halloran KD. Does episodic hypoxia affect upper airway dilator muscle function? Implications for the pathophysiology of obstructive sleep apnoea[J]. Respir Physiol Neurobiol, 2005, 147(2-3): 223-234. [4] Grasselli F, Basini G, Bussolati S, et al.Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells[J]. Reprod Fertil Dev, 2005, 17(7): 715-720. [5] 李晰, 辛世杰, 王磊, 等. 氯化钴模拟法构建骨骼肌细胞缺氧模型[J]. 中国医科大学学报, 2014, 43(3): 265-268. [6] Rovetta F, Stacchiotti A, Faggi F, et al.Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes[J]. Toxicol Appl Pharmacol, 2013, 271(2): 196-205. [7] Nuti N, Corallo C, Chan BM, et al.Multipotent differentiation of human dental pulp stem cells: a literature review[J]. Stem Cell Rev, 2016, 12(5): 511-523. [8] Liang X, Ding Y, Zhang Y, et al.Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives[J]. Cell Transplant. 2014, 23(9): 1045-1059. [9] Gehmert S, Wenzel C, Loibl M, et al.Adipose tissue-derived stem cell secreted IGF-1 protects myoblasts from the negative effect of myostatin[J]. Biomed Res Int, 2014, 2014: 129048. [10] Sassoli C, Frati A, Tani A, et al.Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation[J]. PloS One, 2014, 9(9): e108662. [11] Nakamura Y, Miyaki S, Ishitobi H, et al.Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration[J]. FEBS Lett. 2015, 589(11): 1257-1265. [12] St-Pierre J, Drori S, Uldry M, et al.Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators[J]. Cell, 2006, 127(2): 397-408. [13] Yuan Y, Shi M, Li L, et al.Mesenchymal stem cell-conditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/PGC-1alpha pathway[J]. Clin Sci (Lond), 2016, 130(23): 2181-2198. [14] Peng YJ, Overholt JL, Kline D, et al.Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas[J]. Proc Natl Acad Sci USA, 2003, 100(17): 10073-10078. [15] Yuan G, Adhikary G, Mccormick AA, et al.Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells[J]. J Physiol, 2004, 557(Pt 3): 773-783. [16] Shan X, Chi L, Ke Y, et al.Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxidative damage[J]. Neurobiol Dis, 2007, 28(2): 206-215. [17] Chopra S, Polotsky VY, Jun JC.Sleep apnea research in animals. past, present, and future[J]. Am J Respir Cell Mol Biol, 2016, 54(3): 299-305. [18] Kiernan EA, Smith SM, Mitchell GS, et al.Mechanisms of microglial activation in models of inflammation and hypoxia: implications for chronic intermittent hypoxia[J]. J Physiol, 2016, 594(6): 1563-1577. [19] Li Y, Liu Y, Lu Y, et al.Inhibitory effects of 17beta-estradiol or a resveratrol dimer on hypoxia-inducible factor-1alpha in genioglossus myoblasts: involvement of ERalpha and its downstream p38 MAPK pathways[J]. Int J Mol Med, 2017, 40(5): 1347-1356. [20] Ge H, Liu J, Liu F, et al.Long non-coding RNA ROR mitigates cobalt chloride-induced hypoxia injury through regulation of miR-145[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2221-2229. [21] Muñoz-Sánchez J, Chánez-Cárdenas ME.The use of cobalt chloride as a chemical hypoxia model[J]. J Appl Toxicol, 2019, 39(4): 556-570. [22] Manu TM, Anand T, Pandareesh MD, et al.Terminalia arjuna extract and arjunic acid mitigate cobalt chloride-induced hypoxia stress-mediated apoptosis in h9c2 cells[J]. Naunyn Schmiedebergs Arch Pharmacol, 2019, 392(9): 1107-1119. [23] Yang Z, Yang C, Xiao L, et al.Novel insights into the role of HSP90 in cytoprotection of H2S against chemical hypoxia-induced injury in h9c2 cardiac myocytes[J]. Int J Mol Med, 2011, 28(3): 397-403. [24] del Olmo-Aguado S, Núñez-Álvarez C, Ji D, et al. RTP801 immunoreactivity in retinal ganglion cells and its down-regulation in cultured cells protect them from light and cobalt chloride[J]. Brain Res Bull, 2013, 98: 132-144. [25] Guan D, Su Y, Li Y, et al.Tetramethylpyrazine inhibits CoCl2 -induced neurotoxicity through enhancement of Nrf2/GCLc/GSH and suppression of HIF1alpha/NOX2/ROS pathways[J]. J Neurochem, 2015, 134(3): 551-565. [26] Palmulli R, van Niel G. To be or not to be secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis[J]. Essays Biochem, 2018, 62(2): 177-191. [27] Gnecchi M, He H, Liang OD, et al.Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells[J]. Nat Med, 2005, 11(4): 367-368. [28] Ohkouchi S, Block GJ, Katsha AM, et al.Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1[J]. Mol Ther, 2012, 20(2): 417-423. [29] Li J, Li D, Liu X, et al.Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats[J]. J Inflamm (Lond), 2012, 9(1): 33. [30] Whone AL, Kemp K, Sun M, et al.Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor[J]. Brain Res, 2012, 1431: 86-96. [31] St-Pierre J, Drori S, Uldry M, et al.Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators[J]. Cell, 2006, 127(2): 397-408. [32] Jager S, Handschin C, St-Pierre J, et al.AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha[J]. Proc Natl Acad Sci USA, 2007, 104(29): 12017-12022. [33] Rabinovitch RC, Samborska B, Faubert B, et al.AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species[J]. Cell Rep, 2017, 21(1): 1-9. [34] Sena LA, Chandel NS.Physiological roles of mitochondrial reactive oxygen species[J]. Mol Cell, 2012, 48(2): 158-167. [35] Zhang G, Zou X, Huang Y, et al.Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats[J]. Kidney Blood Press Res.. 2016, 41(2): 119-128. |