[1] Huang GT, Sonoyama W, Liu Y, et al.The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering[J]. J Endod, 2008, 34(6): 645-651. [2] Sonoyama W, Liu Y, Yamaza T, et al.Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study[J]. J Endod, 2008, 34(2): 166-171. [3] Gronthos S, Mankani M, Brahim J, et al.Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2000, 97(25): 13625-13630. [4] Seo BM, Miura M, Gronthos S, et al.Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429): 149-155. [5] Yuan C, Wang P, Zhu L, et al.Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro[J]. Tissue Eng Part A, 2015, 21(5-6): 1163-1172. [6] Aranha AM, Zhang Z, Neiva KG, et al.Hypoxia enhances the angiogenic potential of human dental pulp cells[J]. J Endod, 2010, 36(10): 1633-1637. [7] Zhao L, Wu Y, Tan L, et al.Coculture with endothelial cells enhances osteogenic differentiation of periodontal ligament stem cells via cyclooxygenase-2/prostaglandin E2/vascular endothelial growth factor signaling under hypoxia[J]. J Periodontol, 2013, 84(12): 1847-1857. [8] Lu TX, Rothenberg ME.MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207. [9] Petti S, Andreasen JO, Glendor U, et al.The fifth most prevalent disease is being neglected by public health organisations[J]. Lancet Glob Health, 2018, 6(10): e1070-e1071. [10] Bourguignon C, Cohenca N, Lauridsen E, et al.International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 1. Fractures and luxations[J]. Dent Traumatol, 2020, 36(4): 314-330. [11] Rocha Lima TF, Nagata JY, de Souza-Filho FJ, et al. Post-traumatic complications of severe luxations and replanted teeth[J]. J Contemp Dent Pract, 2015, 16(1): 13-19. [12] Andreasen JO, Borrum MK, Jacobsen HL, et al.Replantation of 400 avulsed permanent incisors. 1. diagnosis of healing complications[J]. Endod Dent Traumatol, 1995, 11(2): 51-58. [13] Utikal J, Abba M, Novak D, et al.Function and significance of MicroRNAs in benign and malignant human stem cells[J]. Semin Cancer Biol, 2015, 35: 200-211. [14] Raposo G, Stoorvogel W.Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383. [15] Cheng H, Chang S, Xu R, et al.Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis[J]. Stem Cell Res Ther, 2020, 11(1): 224-238. [16] Liu W, Li L, Rong Y, et al.Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J]. Acta Biomater, 2020, 103(2): 196-212. [17] Krawczenko A, Bielawska-Pohl A, Paprocka M, et al.Microvesicles from human immortalized cell lines of endothelial progenitor cells and mesenchymal stem/stromal cells of adipose tissue origin as carriers of bioactive factors facilitating angiogenesis[J]. Stem Cells Int, 2020, 2020:1289380. [18] Fish JE, Santoro MM, Morton SU, et al.miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell, 2008, 15(2): 272-284. [19] Arif M, Pandey R, Alam P, et al.MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents[J]. J Mol Med (Berl), 2017, 95(12): 1369-1385. [20] Zeng L, He X, Wang Y, et al.MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain[J]. Gene Ther, 2014, 21(1): 37-43. [21] Jun EK, Zhang Q, Yoon BS, et al.Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-beta/SMAD2 and PI3K/Akt pathways[J]. Int J Mol Sci, 2014, 15(1): 605-628. [22] Lee EY, Xia Y, Kim W S, et al.Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF[J]. Wound Repair Regen, 2009, 17(4): 540-547. [23] Semenza GL.Hypoxia-inducible factor 1 and cardiovascular disease[J]. Annu Rev Physiol, 2014, 76(1): 39-56. [24] Fasanaro P, D'Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3[J]. J Biol Chem, 2008, 283(23): 15878-15883. [25] Liu Y, Nie H, Zhang K, et al.A feedback regulatory loop between HIF-1alpha and miR-21 in response to hypoxia in cardiomyocytes[J]. FEBS Lett, 2014, 588(17): 3137-3146. |