Shanghai Journal of Stomatology ›› 2014, Vol. 23 ›› Issue (2): 248-252.
• Review Article • Previous Articles Next Articles
ZHOU Yu-ning, XIA Lun-guo, XU Yuan-jin
Received:
2013-10-28
Online:
2014-04-20
Published:
2014-05-21
CLC Number:
ZHOU Yu-ning, XIA Lun-guo, XU Yuan-jin. Research progress of nano-hydroxyapatite complexes in bone tissue regeneration[J]. Shanghai Journal of Stomatology, 2014, 23(2): 248-252.
[1] Zhu X, Eibl O, Scheideler L, et al. Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviors [J]. J Biomed Mater Res A, 2006, 79(1): 114-127. [2] Fukui N, Sato T, Kuboki Y, et al. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation [J]. Biomed Mater Eng, 2008, 18(1): 25-33. [3] Palazzo B, Gallo A, Casillo A, et al. Fabrication, characterization and cell cultures on a novel composite chitosan-nano-hydroxyapatite scaffold [J]. Int J Immunopathol Pharmacol, 2011, 24(1 Suppl 2): 73-78. [4] Chesnutt BM, Yuan Y, Buddington K, et al. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo[J]. Tissue Eng Part A, 2009, 15(9): 2571-2579. [5] Teng S, Chen L, Guo Y, et al. Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres [J]. J Inorg Biochem, 2007, 101(4): 686-691. [6] Dou XC, Li QL, Zhou J, et al. Biomimetic synthesis of a novel antibacterial nano-composite materials of hydroxyapatite and gelatin for bone repair and its biocompatibility in vitro [J]. Shanghai Kou Qiang Yi Xue, 2010, 19(3): 285-289. [7] Huang M, Feng J, Wang J, et al. Synthesis and characterization of nano-HA/PA66 composites [J]. J Mater Sci Mater Med, 2003, 14(7): 655-660. [8] Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials, 2007, 28(22): 3338-3348. [9] Fang L, Leng Y, Gao P. Processing and mechanical properties of HA/UHMWPE nanocomposites [J]. Biomaterials, 2006, 27(20): 3701-3707. [10] Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering [J]. Biomaterials, 2004, 25(19): 4749-4757. [11] Hong Z, Zhang P, He C, et al. Nano-composite of poly (L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility [J]. Biomaterials, 2005, 26(32): 6296-6304. [12] 王世革. 锂皂石或羟基磷灰石掺杂的静电纺纳米纤维的生物医学应用研究 [D]. 上海: 东华大学, 2013: 9-125. [13] Wang DX, He Y, Bi L, et al. Enhancing the bioactivity of Poly (lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model [J]. Int J Nanomedicine, 2013, 8: 1855-1865. [14] Heo SJ, Kim SE, Wei J, et al. In vitro and animal study of novel nano-hydroxyapatite/poly (epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process [J].Tissue Eng Part A, 2009, 15(5): 977-989. [15] 王林, 孙清杰, 翁履谦, 等. 纳米羟基磷灰石粉体及其与 PEEK 复合材料的制备 [J]. 材料开发与应用, 2006, 21(4): 33-37. [16] 倪卓, 田生礼, 王应, 等. PEEK/HA复合材料热稳定性及细胞毒性试验 [J]. 生物骨科材料与临床研究, 2012, 9(4): 9-12. [17] Fu S, Ni P, Wang B, et al. In vivo biocompatibility and osteogenesis of electrospun poly (ε-caprolactone)epoly(ethylene glycol)epoly(ε-caprolactone)/nano-hydroxyapatite composite scaffold [J]. Biomaterials, 2012, 33(33): 8363-8371. [18] Wang F, Zhang YC, Zhou H, et al. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells [J]. J Biomed Mater Res A, 2014, 102(3):760-768. [19] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties[J]. Biomaterials, 2003, 24(13): 2161-2175. [20] Wepener I, Richter W, van Papendorp D, et al. In vitro osteoclast-like and osteoblast cells' response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering[J]. J Mater Sci Mater Med, 2012, 23(12): 3029-3040. [21] Reddy S, Wasnik S, Guha A, et al. Evaluation of nano-biphasic calcium phosphate ceramics for bone tissue engineering applications: in vitro and preliminary in vivo studies [J]. J Biomater Appl, 2013, 27(5): 565-575. [22] Chen Z, Liu H, Liu X, et al. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties [J].J Biomed Mater Res A, 2011, 99(4): 554-563. [23] Liu X, Liu HY, Lian X, et al. Osteogenesis of mineralized collagen bone graft modified by PLA and calcium sulfate hemihydrate: in vivo study[J]. J Biomater Appl, 2013, 28(1):12-19. [24] Zhou S, Ma J, Shen Y, et al. In vitro studies of calcium phosphate silicate bone cements [J]. J Mater Sci Mater Med, 2013, 24(2): 355-364. [25] Zhao D, Huang W, Rahaman MN, et al. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution[J].Acta Biomater, 2009, 5(4):1265-1273. [26] Webster TJ, Siegel RW, Bizios R. Design and evaluation of nanophase alumina for orthopaedic/dental applications [J]. Nanostruct Mater, 1999, 12(5-8): 983-986. [27] Tripathi G, Gough JE, Dinda A, et al. In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites [J]. J Biomed Mater Res A, 2013, 101(6): 1539-1549. [28] Brook I, Freeman C, Grubb S, et al. Biological evaluation of nano-hydroxyapatite-zirconia (HA-ZrO2) composites and strontium-hydroxyapatite(Sr-HA) for load-bearing applications[J]. J Biomater Appl, 2012, 27(3): 291-298. [29] Will J, Hoppe A, Müller FA, et al. Bioactivation of biomorphous silicon carbide bone implants [J]. Acta Biomater, 2010, 6(12): 4488-4494. [30] Hesaraki S, Ebadzadeh T, Ahmadzadeh-Asl S. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties [J]. J Mater Sci Mater Med, 2010, 21(7): 2141-2149. [31] Nie L, Chen D, Suo J, et al. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2012, 100: 169-176. [32] Linh NT, Lee KH, Lee BT. Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects [J]. J Biomed Mater Res A, 2013, 101(8): 2412-2423. [33] Huang Y, Zhou G, Zheng L, et al. Micro-/nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage [J]. Nanoscale, 2012, 4(7): 2484-2490. [34] Liu X, Lin K, Wu C, et al. Multilevel hierarchically ordered artificial biomineral [J]. Small, 2014, 10(1):152-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||