[1] Arx T, Lozanoff S.Clinical oral anatomy[M]. New York: Springer Cham, 2017. [2] Denio D, Torabinejad M, Bakland LK.Anatomical relationship of the mandibular canal to its surrounding structures in mature mandibles[J]. J Endod, 1992, 18(4):161-165. [3] Orhan K, Aksoy S, Bilecenoglu B, et al.Evaluation of bifid mandibular canals with cone-beam computed tomography in a Turkish adult population: a retrospective study[J]. Surg Radiol Anat, 2011, 33(6): 501-507. [4] Pria CM, Masood F, Beckerley JM, et al.Study of the inferior alveolar canal and mental foramen on digital panoramic images[J]. J Contemp Dent Tract, 2011, 12(4): 265-271. [5] Bogdán S, Pataky L, Barabás J, et al.Atypical courses of the mandibular canal: comparative examination of dry mandibles and X-rays[J]. J Craniofac Surg, 2006, 17(3): 487-491. [6] Kuczynski A, Kucharski W, Franco A, et al.Prevalence of bifid mandibular canals in panoramic radiographs: a maxillofacial surgical scope[J]. Surg Radiol Anat, 2014, 36(9): 847-850. [7] Naitoh M, Hiraiwa Y, Aimiya H, et al.Observation of bifid mandibular canal using cone-beam computerized tomography[J]. Int J Oral Maxillofac Implants, 2009, 24(1): 155-159. [8] Angelopoulos C, Thomas SL, Hechler S, et al.Comparison between digital panoramic radiography and cone-beam computed tomography for the identification of the mandibular canal as part of presurgical dental implant assessment[J]. J Oral Maxillofac Surg, 2008, 66(10): 2130-2135. [9] Cantekin K, Sekerci AE, Miloglu O, et al.Identification of the mandibular landmarks in a pediatric population[J]. Med Oral Patol Oral Cir Bucal, 2014, 19(2): e136-e141. [10] Isensee F, Jaeger PF, Kohl SAA, et al.nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nat Methods, 2021, 18(2):203-211. [11] Miki Y, Muramatsu C, Hayashi T, et al.Classification of teeth in cone-beam CT using deep convolutional neural network[J]. Comput Biol Med, 2017, 80(1): 24-29. [12] Vranckx M, Van Gerven A, Willems H, et al.Artificial intelligence (AI)-driven molar angulation measurements to predict third molar eruption on panoramic radiographs[J]. Int J Environ Res Public Health, 2020, 17(10): 3716. [13] Milletari F, Navab N, Ahmadi SA.V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision (3DV). CA: Stanford, 2016: 565-571. [14] Jaskari J, Sahlsten J, Järnstedt J, et al.Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes[J]. Sci Rep, 2020, 10(1): 5842. [15] Abdolali F, Zoroofi RA, Abdolali M, et al.Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching[J]. Int J Comput Assist Radiol Surg, 2017, 12(4): 581-593. [16] 郭毅, 张巧红, 韩晓倩, 等. 下颌管分支的锥形束CT影像学分析[J]. 华西口腔医学杂志, 2015, 33(2): 158-160. [17] 孙芹,杨永进,李广. 双下颌管分支的CBCT观察[J]. 牙体牙髓牙周病学杂志, 2017, 27(12): 713-716. [18] Haghighat A, Jafari Z, Hasheminia D, et al.Comparison of success rate and onset time of two different anesthesia techniques[J]. Med Oral Patol Oral Cir Bucal, 2015, 20(4): e459-e463. [19] Neves FS, Nascimento MC, Oliveira ML, et al.Comparative analysis of mandibular anatomical variations between panoramic radiography and cone beam computed tomography[J]. Oral Maxillofac Surg, 2014, 18(4): 419-424. [20] Zhang YQ, Zhao YN, Liu DG, et al.Bifid variations of the mandibular canal: cone beam computed tomography evaluation of 1000 Northern Chinese patients[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018, 126(5): e271-e278. [21] 余蕾, 朱钢. 基于CBCT 的西南地区汉族人双下颌管形态学研究[J]. 口腔医学, 2018, 38(8): 713-716. [22] Yang X, Lyu C, Zou D.Bifid mandibular canals incidence and anatomical variations in the population of Shanghai area by cone beam computed tomography[J]. J Comput Assist Tomogr, 2017, 41(4): 535-540. |