[1] Asiry MA.Biological aspects of orthodontic tooth movement: A review of literature[J]. Saudi J Biol Sci, 2018, 25(6): 1027-1032. [2] Sun J, Zhang X, Li R, et al.Biological effects of orthodontic tooth movement into the grafted alveolar cleft[J]. J Oral Maxillofac Surg, 2018, 76(3): 605-615. [3] Bahammam MA.Effectiveness of bovine-derived xenograft versus bioactive glass with periodontally accelerated osteogenic orthodontics in adults: a randomized, controlled clinical trial[J]. BMC Oral Health, 2016, 16(1): 126. [4] Zhang D, Chu F, Yang Y, et al.Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs[J]. Tissue Eng Part A, 2011, 17(9-10): 1313-1325. [5] Sugimori T, Yamaguchi M, Shimizu M, et al.Micro-osteoperforations accelerate orthodontic tooth movement by stimulating periodontal ligament cell cycles[J]. Am J Orthod Dentofacial Orthop, 2018, 154(6): 788-796. [6] Qamruddin I, Alam M, Mahroof V, et al.Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets[J]. Am J Orthod Dentofacial Orthop, 2017, 152(5): 622-630. [7] 毛文文, 茹江英. 羟基磷灰石类陶瓷在骨组织工程中的研究与更广泛应用[J]. 中国组织工程研究, 2018, 22(30): 4855-4863. [8] Ikumi A, Funayama T, Tsukanishi T, et al.Novel unidirectional porous β-tricalcium phosphate used as a bone substitute after excision of benign bone tumors of the hand: a case series[J]. J Hand Surg Asian Pac Vol, 2018, 23(3): 424-429. [9] Derubeis AR, Cancedda R.Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances[J]. Ann Biomed Eng, 2004, 32(1): 160-165. [10] 李海旭, 石继祥, 石文俊, 等. 新西兰大白兔组织工程骨的构建及体内异位成骨效果[J]. 中国临床医学, 2017, 24(1): 89-92. [11] Ahn HW, Ohe JY, Lee SH, et al.Timing of force application affects the rate of tooth movement into surgical alveolar defects with grafts in beagles[J]. Am J Orthod Dentofacial Orthop, 2014, 145(4): 486-495. [12] 李壬媚, 许悦, 陈振琦, 等. 不同时机牙移动对SD大鼠牙槽突裂植骨区骨改建的影响[J]. 中国口腔颌面外科杂志, 2012, 10(2): 96-100. [13] Araújo MG, Carmagnola D, Berglundh T, et al.Orthodontic movement in bone defects augmented with Bio-Oss. An experimental study in dogs[J]. J Clin Periodontol, 2001, 28(1): 73-80. [14] Kawamoto T, Motohashi N, Kitamura A, et al.A histological study on experimental tooth movement into bone induced by recombinant human bone morphogenetic protein-2 in beagle dogs[J]. Cleft Palate Craniofac J, 2002, 39(4): 439-448. [15] Wang L, Lee W, Lei D, et al. Tissue responses in corticotomy- and osteotomy-assisted tooth movements in rats: histology and immunostaining[J]. Am J Orthod Dentofacial Orthop, 2009, 136(6): 770.e1-11. [16] Choi EK, Lee JH, Baek SH, et al.Gene expression profile altered by orthodontic tooth movement during healing of surgical alveolar defect[J]. Am J Orthod Dentofacial Orthop, 2017, 151(6): 1107-1115. [17] Kim KA, Choi EK, Ahn JO, et al.Effect of low-level of laser therapy on orthodontic tooth movement into bone grafted alveolar defects[J]. Am J Orthod Dentofacial Orthop, 2015, 148(4): 608-617. [18] 李翀乾, 刘继光. 正畸治疗中牙根吸收影响因素的研究进展[J]. 北京口腔医学, 2018, 26(3): 178-180. [19] Han G, Huang S, Von den Hoff JW, et al. Root resorption after orthodontic intrusion and extrusion: an intraindividual study[J]. Angle Orthod, 2005, 75(6): 912-918. [20] Alejandro IL, Lorri AM, James KH.Bone density and dental external apical root resorption[J]. Curr Osteoporos Rep, 2016, 14(6): 292-309. |