[1] Balla VK, Bodhak S, Bose S, et al.Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties[J]. Acta Biomater, 2010, 6(8): 3349-3359. [2] Yazdimamaghani M, Razavi M, Vashaee D, et al.Porous magnesium-based scaffolds for tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2017, 71: 1253-1266. [3] Tsao AK, Roberson JR, Christie MJ, et al.Biomechanical and clinical evaluations of a porous tantalum implant for the treatment of early-stage osteonecrosis[J]. J Bone Joint Surg Am, 2005, 87(Suppl 2): 22-27. [4] Gerscovich D, Schwing C, Unger A.Long-term results of a porous tantalum monoblock tibia component: clinical and radiographic results at follow-up of 10 years[J]. Arthroplast Today, 2017, 3(3): 192-196. [5] 王汇丰, 阮建明, 李婧, 等.多孔钽铌合金及其制备方法: 中国, 103805798 [P]. 2014. [6] Wang H, Li J, Yang H, et al.Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2014, 40: 71-75. [7] Chen Q, Thouas GA.Metallic implant biomaterials[J]. Mater Sci Eng R Rep, 2015, 87: 1-57. [8] Wang N, Li H, Wang J, et al.Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films[J]. ACS Appl Mater Interfaces, 2012, 4(9): 4516-4523. [9] Mohandas G, Oskolkov N, Mcmahon MT, et al.Porous tantalum and tantalum oxide nanoparticles for regenerative medicine[J].Acta Neurobiol Exp (Wars), 2014, 74(2):188-196. [10] Annunziata M, Guida L.The effect of titanium surface modifications on dental implant osseointegration[J]. Front Oral Biol, 2015, 17: 62-77. [11] Levine BR, Sporer S, Poggie RA, et al.Experimental and clinical performance of porous tantalum in orthopedic surgery[J]. Biomaterials, 2006, 27(27): 4671-4681. [12] Jonitz A, Lochner K, Lindner T, et al.Oxygen consumption, acidification and migration capacity of human primary osteoblasts within a three-dimensional tantalum scaffold[J]. J Mater Sci Mater Med, 2011, 22(9): 2089-2095. [13] Welldon KJ, Atkins GJ, Howie DW, et al.Primary human osteoblasts grow into porous tantalum and maintain an osteoblastic phenotype[J].J Biomed Mate Res A, 2008, 84(3): 691-701. [14] Wang Q, Zhang H, Li Q, et al.Biocompatibility and osteogenic properties of porous tantalum[J]. Exp Ther Med, 2015, 9(3): 780-786. [15] Bobyn JD, Stackpool GJ, Hacking SA, et al.Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial[J].J Bone Joint Surg Br, 1999, 81(5): 907-914. [16] 栗振宝, 孙庆, 潘力. 软骨钙化的X射线能谱半定量分析[J]. 电子显微学报, 1994, 13(5): 394. [17] 陈勤, 何季平, 郑启新, 等. 多孔磷酸三钙陶瓷骨内植入后的超微结构研究[J]. 中国生物医学工程学报, 1999, 18(3): 262-272. [18] Perényi J, Bene L, Radnai M, et al.Model investigation of push-out test used for quantitative evaluation of dental implant osseointegration[J]. Fogorv Sz, 2002, 95(3): 105-111. [19] Smith JO, Sengers BG, Aarvold A, et al.Tantalum trabecular metal-addition of human skeletal cells to enhance bone implant interface strength and clinical application[J]. J Tissue Eng Regen Med, 2014, 8(4): 304-313. [20] Itälä AI, Ylänen HO, Ekholm C, et al.Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits[J]. J Biomed Mater Res, 2001, 58(6): 679-683. [21] Jones AC, Arns CH, Sheppard AP, et al.Assessment of bone ingrowth into porous biomaterials using MICRO-CT[J]. Biomaterials, 2007, 28(15): 2491-2504. [22] Li JP, Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810-2820. |