[1] 段银钟, 冷军. 正畸临床推磨牙远移技术 [M]. 西安: 世界图书出版公司, 2005: 10-15. [2] Proffit WR. Contemporary orthodontics [M]. St Louis: Mosby-Year book, 2007: 331-335. [3] Ammar HH, Ngan P, Crout RJ, et al. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement [J]. Am J Orthod Dentofacial Orthop, 2011, 139(1): 59-71. [4] Qian Y, Fan Y, Liu Z, et al. Numerical simulation of tooth movement in a therapy period [J]. Clin Biomech (Bristol, Avon), 2008, 23(Suppl 1): S48-52. [5] 王晓玲, 徐宝华, 梁炜, 等. 不同受力方式下上颌第一磨牙牙槽骨应力分布的有限元分析[J]. 医用生物力学, 2009, 24(4): 300-303. [6] Tanne K, Sakuda M, Burstone CJ, et al. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces[J]. Am J Orthod Dentofacial Orthop,1987,92(6): 499-505. [7] Vollmer D, Bourauel C, Maier K, et al. Determination of the centre of resistance in an upper human canine and idealized tooth model [J]. Eur J Orthod, 1999, 21(6): 633-648. [8] Jeon PD, Turley PK, Ting K, et al. Three-dimensional finite element analysis of stress in the periodontal ligament of the maxillary first molar with simulated bone loss [J]. Am J Orthod Dentofacial Orthop, 2001, 119(5): 498-504. [9] 李志华, 陈扬熙, 刘剑, 等. 上颌第一磨牙远中移动时牙周应力分布的三维有限元分析 [J]. 华西口腔医学杂志, 2003, 21(4): 267-269. [10] Jeon PD, Turley PK, Moon HB, et al. Analysis of stress in the periodontium of the maxillary first molar with a three-dimensional finite element model [J]. Am J Orthod Dentofacial Orthop, 1999, 115(3): 267-274. [11] Dong-Xu L, Hong-Ning W, Chun-Ling W, et al. Modulus of elasticity of human periodontal ligament by optical measurement and numerical simulation[J]. Angle Orthod, 2011, 81(2): 229-236. [12] Rygh P. Ultrastructural changes in pressure zones of human periodontium incident to orthodontic tooth movement[J]. Acta Odontol Scand, 1973, 31(2): 109-122. [13] Hohmann A, Wolfram U, Geiger M, et al. Periodontal ligament hydrostatic pressure with areas of root resorption after application of a continuous torque moment[J]. Angle Orthod, 2007, 77(4): 653-659. [14] Panagiotopoulou O, Kupczik K, Cobb SN. The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis [J]. J Anat, 2011, 218(1): 75-86. [15] Dorow C, Krstin N, Sander FG. Experiments to determine the material properties of the periodontal ligament[J]. J Orofac Orthop, 2002, 63(2): 94-104. [16] Poppe M, Bourauel C, Jäger A. Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models[J]. J Orofac Orthop, 2002, 63(5): 358-370. [17] Ziegler A, Keilig L, Kawarizadeh A, et al. Numerical simulation of the biomechanical behaviour of multi-rooted teeth[J]. Eur J Orthod, 2005, 27(4): 333-339. [18] Natali AN, Pavan PG, Scarpa C. Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament[J]. Dent Mater, 2004, 20(7): 623-629. [19] Rawlinson A, Elcock C, Cheung A, et al. An in-vitro and in-vivo methodology study of alveolar bone measurement using extra-oral radiographic alignment apparatus, image pro-plus software and a subtraction programme[J]. J Dent, 2005, 33(9): 781-788. [20] Viecilli RF, Budiman A, Burstone CJ. Axes of resistance for tooth movement: does the center of resistance exist in 3-dimensional space? [J]. Am J Orthod Dentofacial Orthop, 2013, 143(2): 163-172. [21] Schneider J, Geiger M, Sander FG. Numerical experiments on long-time orthodontic tooth movement[J]. Am J Orthod Dentofacial Orthop, 2002, 121(3): 257-265. |