上海口腔医学 ›› 2014, Vol. 23 ›› Issue (2): 248-252.
周宇宁, 夏伦果, 徐袁瑾
收稿日期:
2013-10-28
出版日期:
2014-04-20
发布日期:
2014-05-21
作者简介:
周宇宁(1989-), 女, 在读硕士研究生, E-mail:xiaoyao7958@163.com徐袁瑾, Tel:021-63135005, E-mail:xuyuanjin@hotmail.com
基金资助:
ZHOU Yu-ning, XIA Lun-guo, XU Yuan-jin
Received:
2013-10-28
Online:
2014-04-20
Published:
2014-05-21
摘要: 由于人体骨组织中主要无机成分为纳米羟基磷灰石, 人工合成纳米羟基磷灰石成为骨组织修复领域中的研究热点。而为弥补纳米羟基磷灰石材料本身的多方面不足, 复合材料应运而生。本文就常见纳米羟基磷灰石复合材料及其在骨组织修复领域中的研究进展做简要综述。
中图分类号:
周宇宁, 夏伦果, 徐袁瑾. 复合纳米羟基磷灰石材料在骨组织修复领域中的研究进展[J]. 上海口腔医学, 2014, 23(2): 248-252.
ZHOU Yu-ning, XIA Lun-guo, XU Yuan-jin. Research progress of nano-hydroxyapatite complexes in bone tissue regeneration[J]. Shanghai Journal of Stomatology, 2014, 23(2): 248-252.
[1] Zhu X, Eibl O, Scheideler L, et al. Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviors [J]. J Biomed Mater Res A, 2006, 79(1): 114-127. [2] Fukui N, Sato T, Kuboki Y, et al. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation [J]. Biomed Mater Eng, 2008, 18(1): 25-33. [3] Palazzo B, Gallo A, Casillo A, et al. Fabrication, characterization and cell cultures on a novel composite chitosan-nano-hydroxyapatite scaffold [J]. Int J Immunopathol Pharmacol, 2011, 24(1 Suppl 2): 73-78. [4] Chesnutt BM, Yuan Y, Buddington K, et al. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo[J]. Tissue Eng Part A, 2009, 15(9): 2571-2579. [5] Teng S, Chen L, Guo Y, et al. Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres [J]. J Inorg Biochem, 2007, 101(4): 686-691. [6] Dou XC, Li QL, Zhou J, et al. Biomimetic synthesis of a novel antibacterial nano-composite materials of hydroxyapatite and gelatin for bone repair and its biocompatibility in vitro [J]. Shanghai Kou Qiang Yi Xue, 2010, 19(3): 285-289. [7] Huang M, Feng J, Wang J, et al. Synthesis and characterization of nano-HA/PA66 composites [J]. J Mater Sci Mater Med, 2003, 14(7): 655-660. [8] Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials, 2007, 28(22): 3338-3348. [9] Fang L, Leng Y, Gao P. Processing and mechanical properties of HA/UHMWPE nanocomposites [J]. Biomaterials, 2006, 27(20): 3701-3707. [10] Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering [J]. Biomaterials, 2004, 25(19): 4749-4757. [11] Hong Z, Zhang P, He C, et al. Nano-composite of poly (L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility [J]. Biomaterials, 2005, 26(32): 6296-6304. [12] 王世革. 锂皂石或羟基磷灰石掺杂的静电纺纳米纤维的生物医学应用研究 [D]. 上海: 东华大学, 2013: 9-125. [13] Wang DX, He Y, Bi L, et al. Enhancing the bioactivity of Poly (lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model [J]. Int J Nanomedicine, 2013, 8: 1855-1865. [14] Heo SJ, Kim SE, Wei J, et al. In vitro and animal study of novel nano-hydroxyapatite/poly (epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process [J].Tissue Eng Part A, 2009, 15(5): 977-989. [15] 王林, 孙清杰, 翁履谦, 等. 纳米羟基磷灰石粉体及其与 PEEK 复合材料的制备 [J]. 材料开发与应用, 2006, 21(4): 33-37. [16] 倪卓, 田生礼, 王应, 等. PEEK/HA复合材料热稳定性及细胞毒性试验 [J]. 生物骨科材料与临床研究, 2012, 9(4): 9-12. [17] Fu S, Ni P, Wang B, et al. In vivo biocompatibility and osteogenesis of electrospun poly (ε-caprolactone)epoly(ethylene glycol)epoly(ε-caprolactone)/nano-hydroxyapatite composite scaffold [J]. Biomaterials, 2012, 33(33): 8363-8371. [18] Wang F, Zhang YC, Zhou H, et al. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells [J]. J Biomed Mater Res A, 2014, 102(3):760-768. [19] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties[J]. Biomaterials, 2003, 24(13): 2161-2175. [20] Wepener I, Richter W, van Papendorp D, et al. In vitro osteoclast-like and osteoblast cells' response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering[J]. J Mater Sci Mater Med, 2012, 23(12): 3029-3040. [21] Reddy S, Wasnik S, Guha A, et al. Evaluation of nano-biphasic calcium phosphate ceramics for bone tissue engineering applications: in vitro and preliminary in vivo studies [J]. J Biomater Appl, 2013, 27(5): 565-575. [22] Chen Z, Liu H, Liu X, et al. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties [J].J Biomed Mater Res A, 2011, 99(4): 554-563. [23] Liu X, Liu HY, Lian X, et al. Osteogenesis of mineralized collagen bone graft modified by PLA and calcium sulfate hemihydrate: in vivo study[J]. J Biomater Appl, 2013, 28(1):12-19. [24] Zhou S, Ma J, Shen Y, et al. In vitro studies of calcium phosphate silicate bone cements [J]. J Mater Sci Mater Med, 2013, 24(2): 355-364. [25] Zhao D, Huang W, Rahaman MN, et al. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution[J].Acta Biomater, 2009, 5(4):1265-1273. [26] Webster TJ, Siegel RW, Bizios R. Design and evaluation of nanophase alumina for orthopaedic/dental applications [J]. Nanostruct Mater, 1999, 12(5-8): 983-986. [27] Tripathi G, Gough JE, Dinda A, et al. In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites [J]. J Biomed Mater Res A, 2013, 101(6): 1539-1549. [28] Brook I, Freeman C, Grubb S, et al. Biological evaluation of nano-hydroxyapatite-zirconia (HA-ZrO2) composites and strontium-hydroxyapatite(Sr-HA) for load-bearing applications[J]. J Biomater Appl, 2012, 27(3): 291-298. [29] Will J, Hoppe A, Müller FA, et al. Bioactivation of biomorphous silicon carbide bone implants [J]. Acta Biomater, 2010, 6(12): 4488-4494. [30] Hesaraki S, Ebadzadeh T, Ahmadzadeh-Asl S. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties [J]. J Mater Sci Mater Med, 2010, 21(7): 2141-2149. [31] Nie L, Chen D, Suo J, et al. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2012, 100: 169-176. [32] Linh NT, Lee KH, Lee BT. Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects [J]. J Biomed Mater Res A, 2013, 101(8): 2412-2423. [33] Huang Y, Zhou G, Zheng L, et al. Micro-/nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage [J]. Nanoscale, 2012, 4(7): 2484-2490. [34] Liu X, Lin K, Wu C, et al. Multilevel hierarchically ordered artificial biomineral [J]. Small, 2014, 10(1):152-159. |
[1] | 周霖, 王慧, 徐靖博, 邹子川, 孟箭. 羧甲基壳聚糖/燕麦β葡聚糖复合凝胶的制备及其对大鼠干槽症的治疗效果评价[J]. 上海口腔医学, 2024, 33(4): 354-359. |
[2] | 马学花, 徐江, 夏飞飞, 方桃莉, 孙志鹏. 腮腺深叶良性肿瘤:与定位和手术入路相关的分类[J]. 上海口腔医学, 2024, 33(4): 387-392. |
[3] | 王蕊, 邹慧儒, 刘琪, 常攀辉. 基于logistic回归分析下颌第三磨牙近中、垂直阻生的危险因素[J]. 上海口腔医学, 2024, 33(4): 393-397. |
[4] | 姚旭飞, 蓝博, 季育, 周雪君. 微创环切术对牙列缺损种植患者炎症反应及牙槽嵴顶骨吸收的影响[J]. 上海口腔医学, 2024, 33(4): 398-402. |
[5] | 唐坤伦, 何晓玲, 陈丹. 骨钉骨膜联合髂骨松质骨植骨术修复替牙期唇腭裂牙槽突裂效果评价[J]. 上海口腔医学, 2024, 33(4): 426-431. |
[6] | 林惠, 高云飞, 卫超, 王梦蕾, 马旭辉. 槐角提取物对雌激素缺乏性骨质疏松小鼠牙槽骨骨量的影响[J]. 上海口腔医学, 2024, 33(3): 255-259. |
[7] | 钱叶梅, 王卫红, 朱瑾, 何永静, 许彪, 邹智荣, 施延安, 罗磊, 李静宜. 游离背阔肌皮瓣临床解剖及其在头颈部巨大缺损修复中的应用[J]. 上海口腔医学, 2024, 33(3): 269-272. |
[8] | 李苏娜, 宋文尚, 刘子略, 杜月茹, 蔡世新. 义齿咬合板联合综合物理疗法对颞下颌关节盘不可复性前移位的疗效评价[J]. 上海口腔医学, 2024, 33(3): 273-278. |
[9] | 魏子程, 周晨, 季炼, 侯德强, 董煜. 海奥口腔生物膜单独或联合同种异骨体对颌骨囊肿术后骨缺损修复效果比较[J]. 上海口腔医学, 2024, 33(3): 285-289. |
[10] | 陈宏丽, 尹刚, 张海娟. 阿托伐他汀促进大鼠牙槽骨缺损愈合及对Wnt/β-catenin信号通路的影响[J]. 上海口腔医学, 2024, 33(2): 130-134. |
[11] | 刘琳, 息雪娜, 黄涛, 韩国良. 基质细胞衍生因子1α联合自体贫血小板血浆在恒牙撕脱伤中的应用评价[J]. 上海口腔医学, 2024, 33(2): 175-179. |
[12] | 徐业豪, 任碧晖, 戴婕婷, 魏洪武, 郭水根, 毛卫华. 皮质骨厚度及颌骨骨密度对种植术中疼痛的影响[J]. 上海口腔医学, 2024, 33(2): 211-218. |
[13] | 赵炅, 白果, 杨驰. 口腔黏膜成纤维细胞的单细胞转录组特征[J]. 上海口腔医学, 2024, 33(1): 1-5. |
[14] | 张雪冰, 李琦. PRF负载的Genistein促进肥胖小鼠骨缺损修复的实验研究[J]. 上海口腔医学, 2024, 33(1): 13-21. |
[15] | 张凯悦, 韩泽禹, 姜帅, 徐昊, 李凡, 赵保东. 盘钻法上颌窦内提升牙种植术的10年临床效果回顾分析[J]. 上海口腔医学, 2024, 33(1): 64-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||