[1] Chen AM, Bucci MK, Weinberg V, et al.Adenoid cystic carcinoma of the head and neck treated by surgery with or without postoperative radiation therapy: prognostic features of recurrence[J]. Int J Radiat Oncol Biol Phys, 2006, 66(1): 152-159. [2] Papaspyrou G, Hoch S, Rinaldo A, et al.Chemotherapy and targeted therapy in adenoid cystic carcinoma of the head and neck: a review[J]. Head Neck, 2011, 33(6): 905-911. [3] Dillon PM, Chakraborty S, Moskaluk CA, et al.Adenoid cystic carcinoma: a review of recent advances, molecular targets, and clinical trials[J]. Head Neck, 2016, 38(4): 620-627. [4] Kokemueller H, Eckardt A, Brachvogel P, et al.Adenoid cystic carcinoma of the head and neck-a 20 years experience[J]. Int J Oral Maxillofac Surg, 2004, 33(1): 25-31. [5] Coca-Pelaz A, Rodrigo JP, Bradley PJ, et al.Adenoid cystic carcinoma of the head and neck-an update[J]. Oral Oncol, 2015, 51(7): 652-661. [6] Kumar P, Kumawat RK, Uttam V, et al.The imminent role of microRNAs in salivary adenoid cystic carcinoma[J].Transl Oncol, 2023, 27: 101573. [7] Clough E, Barrett T.The gene expression omnibus database[J]. Methods Mol Biol, 2016, 1418: 93-110. [8] Song X, Du R, Gui H, et al.Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis[J]. Oncol Rep, 2020, 43(1): 133-146. [9] Li Z, Feng J, Zhong J, et al.Screening of the key genes and signalling pathways for diabetic nephropathy using bioinformatics analysis[J]. Front Endocrinol (Lausanne), 2022, 13: 864407. [10] Liu Z, Gao J, Yang Y, et al.Potential targets identified in adenoid cystic carcinoma point out new directions for further research[J]. Am J Transl Res, 2021, 13(3): 1085-1108. [11] Panni S, Lovering RC, Porras P, et al.Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417. [12] Jiang M, Liu X, Zhang C, et al.Bioinformatics identification of the candidate microRNAs and construction of a competing endogenous RNA regulatory network in lacrimal gland adenoid cystic carcinoma high-grade transformation[J]. Oncol Lett, 2021, 21(5): 360-372. [13] Jiang Y, Wang C, Zhou S.Targeting tumor microenvironment in ovarian cancer: premise and promise[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(2): 188361. [14] Guo X, Xiao H, Guo S, et al.Identification of breast cancer mechanism based on weighted gene coexpression network analysis[J]. Cancer Gene Ther, 2017, 24(8): 333-341. [15] Liu C, Zhou Y, Zhou Y, et al.Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning[J]. Comput Biol Med, 2023, 152: 106388. [16] Feng S, Xu Y, Dai Z, et al.Integrative analysis from multicenter studies identifies a WGCNA-derived cancer-associated fibroblast signature for ovarian cancer[J]. Front Immunol, 2022, 13: 951582. [17] Yu R, Zhang J, Zhuo Y, et al.Identification of diagnostic signatures and immune cell infiltration characteristics in rheumatoid arthritis by integrating bioinformatic analysis and machine-learning strategies[J]. Front Immunol, 2021, 12: 724934. [18] Zheng PF, Chen LZ, Liu P, et al.Identification of immune-related key genes in the peripheral blood of ischaemic stroke patients using a weighted gene coexpression network analysis and machine learning[J]. J Transl Med, 2022, 20(1): 1-17. [19] Ritchie ME, Phipson B, Wu D, et al.limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. [20] Yao S, Liu T.Analysis of differential gene expression caused by cervical intraepithelial neoplasia based on GEO database[J]. Oncol Lett, 2018, 15(6): 8319-8324. [21] Langfelder P, Horvath S, Langfelder P, et al.WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinforms, 2008, 9: 559. [22] Yu G, Wang LG, Han Y, et al.clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. [23] Breiman L.Random forests[J]. Mach Learn, 2001, 45(1): 5-32. [24] Alanni R, Hou J, Azzawi H, et al.A novel gene selection algorithm for cancer classification using microarray datasets[J]. BMC Medical Genomics, 2019, 12(1): 10-22. [25] Engebretsen S, Bohlin J.Statistical predictions with glmnet[J]. Clin Epigenetics, 2019, 11(1): 123-126. [26] Huang X, Zeng J, Zhou L, et al.A new strategy for analyzing time-series data using dynamic networks: identifying prospective biomarkers of hepatocellular carcinoma[J]. Sci Rep, 2016, 6(1): 32448. [27] Wang Y, Zhuang H, Jiang XH, et al.Unveiling the key genes, environmental toxins, and drug exposures in modulating the severity of ulcerative colitis: a comprehensive analysis[J]. Front Immunol, 2023, 14: 1162458. [28] Zhang Q, Jiao Y, Ma N, et al.Identification of endoplasmic reticulum stress-related biomarkers of periodontitis based on machine learning: a bioinformatics analysis[J]. Dis Markers, 2022: 8611755. [29] Ho AS, Kannan K, Roy DM, et al.The mutational landscape of adenoid cystic carcinoma[J]. Nat Genet, 2013, 45(7): 791-798. [30] Peters HC, Kämmer G, Volz A, et al.Mapping, genomic structure, and polymorphisms of the human GABABR1 receptor gene: evaluation of its involvement in idiopathic generalized epilepsy[J]. Neurogenetics, 1998, 2(1): 47-54. [31] Shao L, Elujoba-Bridenstine A, Zink KE, et al.The neurotransmitter receptor Gabbr1 regulates proliferation and function of hematopoietic stem and progenitor cells[J]. Blood, 2021, 137(6): 775-787. [32] Longqiu Y, Pengcheng L, Xuejie F, et al.A miRNAs panel promotes the proliferation and invasion of colorectal cancer cells by targeting GABBR1[J]. Cancer Med, 2016, 5(8): 2022-2031. [33] Liang KY, Chun-Yu Ho D, Yang HP, et al. LINC01296 promotes cancer stemness traits in oral carcinomas by sponging miR-143[J]. J Dent Sci, 2023, 18(2): 814-821. [34] Bell D, Bell A, Roberts D, et al.Developmental transcription factor EN1-a novel biomarker in human salivary gland adenoid cystic carcinoma[J].Cancer, 2012, 118(5): 1288-1292. |