[1] Sasaki K, Murakami T, Kawasaki M, et al.The cell cycle associated change of the Ki-67 reactive nuclear antigen expression[J]. J Cell Physiol, 1987, 133(3): 579-584. [2] Jing Y, Zhou Q, Zhu H, et al.Ki-67 is an independent prognostic marker for the recurrence and relapse of oral squamous cell carcinoma[J]. Oncol Lett, 2019, 17(1): 974-980. [3] Takkem A, Barakat C, Zakaraia S, et al.Ki-67 prognostic value in different histological grades of oral epithelial dysplasia and oral squamous cell carcinoma[J]. Asian Pac J Cancer Prev, 2018, 19(11): 3279-3286. [4] Dowsett M, Nielsen TO, A'Hern R, et al. Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast cancer working group[J]. J Natl Cancer Inst, 2011, 103(22): 1656-1664. [5] Nielsen LAG, Bangsθ JA, Lindahl KH, et al.Evaluation of the proliferation marker Ki-67 in gliomas: interobserver variability and digital quantification[J]. Diagn Pathol, 2018, 13(1): 38-45. [6] Aeffner F, Zarella MD, Buchbinder N, et al.Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association[J]. J Pathol Inform, 2019, 10: 9-26. [7] Stålhammar G, Fuentes Martinez N, Lippert M, et al.Digital image analysis outperforms manual biomarker assessment in breast cancer[J]. Mod Pathol, 2016, 29(4): 318-329. [8] Lykkegaard Andersen N, Brügmann A, Lelkaitis G, et al.Virtual double staining: a digital approach to immunohistochemical quantification of estrogen receptor protein in breast carcinoma specimens[J]. Appl Immunohistochem Mol Morphol, 2018,26(9): 620-626. [9] Stålhammar G, Robertson S, Wedlund L, et al.Digital image analysis of Ki67 in hot spots is superior to both manual Ki67 and mitotic counts in breast cancer[J]. Histopathology, 2018, 72(6): 974-989. [10] Mungle T, Tewary S, Arun I, et al.Automated characterization and counting of Ki-67 protein for breast cancer prognosis: a quantitative immunohistochemistry approach[J]. Comput Methods Programs Biomed, 2017, 139: 149-161. [11] Alheejawi S, Xu H, Berendt R, et al.Novel lymph node segmentation and proliferation index measurement for skin melanoma biopsy images[J]. Comput Med Imaging Graph, 2019,73: 19-29. [12] Acs B, Pelekanou V, Bai Y, et al.Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study[J]. Lab Invest, 2019, 99(1): 107-117. [13] Koopman T, Buikema HJ, Hollema H, et al.Digital image analysis of Ki67 proliferation index in breast cancer using virtual dual staining on whole tissue sections: clinical validation and inter-platform agreement[J]. Breast Cancer Res Treat, 2018,169(1): 33-42. [14] Ruifrok AC, Johnston DA.Quantification of histochemical staining by color deconvolution[J]. Anal Quant Cytol Histol, 2001, 23(4): 291-299. [15] Varghese F, Bukhari AB, Malhotra R, et al.IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples[J]. PLoS One, 2014, 9(5): e96801. [16] El-Naggar AK, Chan JKC, Grandis JR, et al.WHO classification of head and neck tumours[M]. Geneva: International Agency for Research on Cancer, 2017. [17] Morreale P.A perceptual colour separation methodology for automated quantification of Ki67 and hematoxylin stained digital histopathology images[D]. Ontario: The University of Guelph, 2018. [18] Qi X, Xing F, Foran DJ, et al.Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set[J]. IEEE Trans Biomed Eng, 2012, 59(3): 754-765. [19] Gonzalez RC, Woods RE.Digital image processing[M]. New Jersey: Perarson Education, 2002. [20] Di Cataldo S, Ficarra E, Acquaviva A, et al.Automated segmentation of tissue images for computerized IHC analysis[J]. Comput Methods Programs Biomed, 2010, 100(1): 1-15. [21] Grala B, Markiewicz T, Kozlowski W, et al.New automated image analysis method for the assessment of Ki-67 labeling index in meningiomas[J]. Folia Histochem Cytobiol, 2009, 47(4): 587-592. [22] Kårsnäs A, Dahl AL, Larsen R.Learning histopathological patterns[J]. J Pathol Inform, 2011, 2: S12. [23] Komura D, Ishikawa S.Machine learning methods for histopathological image analysis[J]. Comput Struct Biotechnol J, 2018, 16(1): 34-42. |