[1] 巩汉顺, 徐伟, 徐寿平, 等. 不同扫描条件下CBCT影像质量及其HU值长期稳定性分析[J].中国医疗器械杂志, 2016, 40(2): 86-89, 94. [2] Chung M, Lee M, Hong J, et al.Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation[J]. Comput Biol Med, 2020, 120: 103720. [3] Cui Z, Li C, Wang W.ToothNet: automatic tooth instance segmentation and identification from cone beam CT images[C]. Proc IEEE/CVF Conf Comput Vis Pattern Recognit(CVPR), 2019: 6361-6370. [4] 赵一姣, 王斯维, 刘怡, 等. 基于影像学牙周膜解剖特征快速提取活体牙三维牙根形态的方法[J]. 北京大学学报(医学版), 2017, 49(1): 54-59. [5] Lee RJ, Pi S, Park J, et al.Accuracy and reliability of the expected root position setup methodology to evaluate root position during orthodontic treatment[J]. Am J Orthod Dentofacial Orthop, 2018, 154(4): 583-595. [6] Gao H, Chae O.Individual tooth segmentation from CT images using level set method with shape and intensity prior[J]. Pattern Recognit, 2010, 43(7): 2406-2417. [7] Gan Y, Xia Z, Xiong J, et al.Tooth and alveolar bone segmentation from dental computed tomography images[J]. IEEE J Biomed Health Inform, 2017, 22(1): 196-204. [8] Evain T, Ripoche X, Atif J, et al.Semi-automatic teeth segmentation in cone-beam computed tomography by graph-cut with statistical shape priors[C]. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017: 1197-1200. [9] Jang TJ, Kim KC, Cho HC, et al.A fully automated method for 3D individual tooth identification and segmentation in dental CBCT[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10): 6562-6568. [10] Chen Y, Du H, Yun Z, et al.Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi-task FCN[J]. IEEE Access, 2020, 8: 97296-97309. [11] Wu X, Chen H, Huang Y, et al.Center-sensitive and boundary-aware tooth instance segmentation and classification from cone-beam CT[C]. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020: 939-942. [12] Yang Y, Xie R, Jia W, et al.Accurate and automatic tooth image segmentation model with deep convolutional neural networks and level set method[J]. Neurocomputing, 2021, 419: 108-125. [13] Cui Z, Zhang B, Lian C, et al.Hierarchical morphology-guided tooth instance segmentation from CBCT images[C]. Information Processing in Medical Imaging: 27th International Conference, 2021: 150-162. [14] Cui Z, Fang Y, Mei L, et al.A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images[J]. Nat Commun, 2022, 13(1): 2096. [15] Róth I, Czigola A, Fehér D, et al.Digital intraoral scanner devices: a validation study based on common evaluation criteria[J]. BMC Oral Health, 2022, 22(1): 140-156. [16] Chiu A, Chen YW, Hayashi J, et al.Accuracy of CAD/CAM digital impressions with different intraoral scanner parameters[J]. Sensors(Basel), 2020, 20(4): 1157-1166. [17] Christopoulou I, Kaklamanos EG, Makrygiannakis MA, et al.Intraoral scanners in orthodontics: a critical review[J]. Int J Environ Res Public Health, 2022, 19(3): 1407-1418. [18] Kihara H, Hatakeyama W, Komine F, et al.Accuracy and practicality of intraoral scanner in dentistry: a literature review[J]. J Prosthodont Res, 2020, 64(2): 109-113. [19] Tomita Y, Uechi J, Konno M, et al.Accuracy of digital models generated by conventional impression/plaster-model methods and intraoral scanning[J]. Dent Mater J, 2018, 37(4): 628-633. [20] Gavounelis NA, Gogola CC, Halazonetis DJ.The effect of scanning strategy on intraoral scanner's accuracy[J]. Dent J, 2022, 10(7): 123-133. [21] 林翔, 傅裕杰, 任根强, 等. U-Net神经网络分割锥形束CT影像中下颌磨牙牙体与牙髓腔及其准确性验证[J]. 上海口腔医学, 2022, 31(5): 454-459. [22] Abramson Z, Susarla SM, Lawler M, et al.Three-dimensional computed tomographic airway analysis of patients with obstructive sleep apnea treated by maxillomandibular advancement[J]. J Oral Maxillofac Surg, 2011, 69(3): 677-686. [23] Honey OB, Scarfe WC, Hilgers MJ, et al.Accuracy of cone-beam computed tomography imaging of the temporomandibular joint: comparisons with panoramic radiology and linear tomography[J]. Am J Orthod Dentofacial Orthop, 2007, 132(4): 429-438. [24] Schubert M, Proff P, Kirschneck C.Improved eruption path quantification and treatment time prognosis in alignment of impacted maxillary canines using CBCT imaging[J]. Eur J Orthod, 2018, 40(6): 597-607. [25] 程涛. 口腔正畸治疗中牙根吸收的研究进展[J]. 临床口腔医学杂志, 2016, 32(1) : 59-61. [26] Pei Y, Ai X, Zha H, et al.3D exemplar-based random walks for tooth segmentation from cone-beam computed tomography images[J]. Med Phys, 2016, 43(9): 5040-5050. [27] Lahoud P, EzEldeen M, Beznik T, et al. Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography[J]. J Endod, 2021, 47(5): 827-835. [28] Ayidh Alqahtani K, Jacobs R, Smolders A, et al.Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study[J]. Eur J Orthod, 2023, 45(2): 169-174. |