上海口腔医学 ›› 2024, Vol. 33 ›› Issue (2): 205-210.doi: 10.19439/j.sjos.2024.02.018

• 论著 • 上一篇    下一篇

全身免疫炎症指数列线图对黏液表皮样癌预后预测价值的研究

李晓娜1,*, 宗颖睿2,*, 张彦喜1, 候珍珍2, 卢丽雯1   

  1. 1.郑州大学第一附属医院 口腔美容科,2.口腔预防科, 河南 郑州 450000
  • 收稿日期:2023-04-24 修回日期:2023-07-10 出版日期:2024-04-25 发布日期:2024-05-14
  • 通讯作者: 张彦喜,E-mail: zhangdoc@sohu.com
  • 作者简介:李晓娜(1997-),女,硕士,E-mail: 18737313383@163.com;宗颖睿(1997-),女,硕士,住院医师,E-mail: 164476289@qq.com。*并列第一作者

Study on the value of systemic immune inflammation index and nomogram in predicting the prognosis of patients with mucoepidermoid carcinoma

LI Xiao-na1, ZONG Ying-rui2, ZHANG Yan-xi1, HOU Zhen-zhen2, LU Li-wen1   

  1. 1. Department of Aesthetic Stomatology, 2. Department of Preventive Dentistry, First Affiliated Hospital of Zhengzhou University. Zhengzhou 450000, Henan Province, China
  • Received:2023-04-24 Revised:2023-07-10 Online:2024-04-25 Published:2024-05-14

摘要: 目的: 探讨全身免疫炎症指数(SII)与黏液表皮样癌(MEC)患者手术后无复发生存期(RFS)的关系,并建立列线图预后模型。方法: 收集2016年1月—2019年7月在郑州大学第一附属医院进行手术治疗的135例MEC患者的临床资料。对患者的SII进行受试者工作特征曲线(ROC)分析,得到最佳截断值,由此将患者SII指数分为高低2组,运用Kaplan- Meier法进行生存分析。采用Cox风险比例回归模型和最小绝对收缩选择算子(LASSO)分析患者预后的影响因素,构建列线图模型预测患者无复发生存期(RFS),采用ROC曲线下面积(AUC)和校正曲线评价该模型,并验证一致性。结果: 生存分析显示,高SII组无复发生存期显著短于低SII组(P<0.001)。Cox风险比例回归模型中,高SII(HR=2.179,95%CI:1.072~4.426,P=0.031)、肿瘤低分化 (HR=6.894,95%CI:2.770~17.158,P<0.001)、颈淋巴结转移(HR=2.091,95%CI:1.034~4.230,P=0.040)为预后因子,与低RFS有关。结论: MEC患者术前SII越低,预后越好,基于SII的列线图可有效预测MEC患者预后。

关键词: 黏液表皮样癌, 全身免疫炎症指数, 列线图, 生存分析, 预后

Abstract: PURPOSE: To investigate the relationship between preoperative systemic immune-inflammation index (SII) and relapse-free survival (RFS) after surgical resection of mucoepidermoid carcinoma(MEC). METHODS: The data of 135 patients with MEC who underwent surgical resection in the First Affiliated Hospital of Zhengzhou University from January 2016 to July 2019 were collected, and the receiver operating characteristic(ROC) curve was performed on the SII of patients. The optimal cut-off value was obtained by ROC analysis. Therefore, the patients' SII index was divided into high and low group, and survival analysis was performed by Kaplan-Meier method. Cox proportional regression model and least absolute shrinkage and selection operator (LASSO) were used to analyze the factors influencing prognosis, and a nomogram model was built to predict patients' relapse-free survival(RFS). Area under curve (AUC) and correction curve were used to evaluate the model and verify the consistency. RESULTS: Survival analysis showed that the RFS rate in low SII group was significantly higher than that in high SII group. Cox proportional hazard regression model showed high SII(HR=2.179, 95%CI: 1.072-4.426, P=0.031) and low tumor differentiation(HR=6.894, 95%CI: 2.770-17.158, P=0.000) and cervical lymph node metastasis (HR=2.091, 95%CI: 1.034-4.230, P=0.040) were significant predictors of poor RFS. CONCLUSIONS: The lower the preoperative SII, the better the prognosis of patients. The nomogram prognosis of MEC based on SII is effective.

Key words: Mucoepidermoid carcinoma, Systemic immune-inflammation index, Nomogram, Survival analysis, Prognosis

中图分类号: