[1] Berzins DW, Kawashima I, Graves R, et al. Heat treatment effects on electrochemical corrosion parameters of high-Pd alloys[J]. J Mater Sci Mater Med, 2008, 19(1): 335-341. [2] Roberts HW, Berzins DW, Moore BK, et al. Metal-ceramic alloys in dentistry: a review [J]. J Prosthodont, 2009, 18(2): 188-194. [3] Oba S, Nagata C, Nakamura K, et al. Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women [J]. Br J Nutr, 2010, 103(3): 453-459. [4] Di Castelnuovo A, di Giuseppe R, Iacoviello L, et al. Consumption of cocoa, tea and coffee and risk of cardiovascular disease [J]. Eur J Intern Med, 2012, 23(1): 15-25. [5] 乔广艳, 苏俭生, 何美凤. 儿茶素对镍铬合金电化学腐蚀性能的实验研究 [J]. 材料导报, 2010, 24(12): 39-41. [6] Wang QY, Zheng YF. The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use [J]. Dent Mater, 2008, 24(9): 1207-1211. [7] Zavanelli RA, Guilherme AS, Pessanha-Henriques GE, et al. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments [J]. J Oral Rehabil, 2004, 31(10): 1029-1034. [8] Zavanelli RA, Pessanha Henriques GE, Ferreira A, et al. Corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloys in different storage environments [J]. J Prosthet Dent, 2000, 84(3): 274-279. [9] 冯婧, 侯彩云. 茶氟浸出规肆的试验研究 [J]. 食品科技, 2006, 32(9): 93-95. [10] Cruz RPV, Nishikata A, Tsuru T. Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environments [J]. Corrosion Sci, 1998, 40(1): 125-139. [11] Wylie CM, Shelton RM, Fleming GJ, et al. Corrosion of nickel-based dental casting alloys [J]. Dent Mater, 2007, 23(6): 714-723. [12] Schiff N, Grosgogeat B, Lissac M, et al. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys [J]. Biomaterials, 2002, 23(9): 1995-2002. [13] Takemoto S, Hattori M, Yoshinari M, et al. Corrosion mechanism of Ti-Cr alloys in solution containing fluoride [J]. Dent Mater, 2009, 25(4): 467-472. [14] Kumar S, Narayanan TS. Corrosion behaviour of Ti-15Mo alloy for dental implant applications [J]. J Dent, 2008, 36(7): 500-507. [15] Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surface characterization of Ti-20Cr alloy in a solution containing fluoride [J]. Dent Mater J, 2004, 23(3): 379-386. [16] Shettlemore MG, Bundy KJ. Assessment of dental material degradation product toxicity using a bioluminescent bacterial assay [J]. Dent Mater, 2002, 18(6): 445-453. [17] Chang JC, Oshida Y, Gregory RL, et al. Electrochemical study on microbiology-related corrosion of metallic dental materials [J]. Biomed Mater Eng, 2003, 13(3): 281-295. [18] Wataha JC, Nelson SK, Lockwood PE. Elemental release from dental casting alloys into biological media with and without protein [J]. Dent Mater, 2001, 17(5): 409-414. [19] Ayad MF, Ayad GM. Corrosion behavior of as-received and previously cast type III gold alloy [J]. J Prosthodont, 2010, 19(3): 194-199. [20] Tuncdemir AR, Karahan I, Polat S, et al. The effect of repeated porcelain firings on corrosion resistance of different dental alloys [J]. J Adv Prosthodont, 2013, 5(1): 44-50. [21] Takahashi N, Takada Y, Okuno O. Galvanic corrosion between dental precious alloys and magnetic stainless steels used for dental magnetic attachments [J].Dent Mater J, 2008, 27(2): 237-242. [22] Hsu RWW, Yang CC, Huang CA, et al. Electrochemical corrosion studies on Co-Cr-Mo implant alloy in biological solutions [J]. Mater Chem Phys, 2005, 93(2): 531-538. [23] Geis-Gerstorfer J, P?ssler K. Studies on the influence of Be content on the corrosion behavior and mechanical properties of Ni-25Cr-10Mo alloys [J]. Dent Mater, 1993, 9(3): 177-181. [24] Johnson T, van Noort R, Stokes CW. Surface analysis of porcelain fused to metal systems [J]. Dent Mater, 2006, 22(4): 330-337. |