[1] Mehrtash H, Duncan K, Parascandola M, et al.Defining a global research and policy agenda for betel quid and areca nut[J]. Lancet Oncol, 2017, 18(12): e767-e775. [2] Zhang S, Zheng R, Chen Q, et al.Oral cancer incidence and mortality in China, 2011[J].Chin J Cancer Res, 2015, 27(1): 44-51. [3] Chen W, Zheng R, Baade PD, et al.Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. [4] Lei L, Zheng R, Peng K, et al.Incidence and mortality of oral and oropharyngeal cancer in China, 2015[J]. Chin J Cancer Res, 2020, 32(1): 1-9. [5] Kumar M, Nanavati R, Modi TG, et al.Oral cancer: etiology and risk factors: a review[J]. J Cancer Res Ther, 2016, 12(2): 458-463. [6] Zeng H, Chen W, Zheng R, et al.Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5): e555-e567. [7] Ronneberger O, Fischer P, Brox T.U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference. Munich: Springer International Publishing, 2015: 234-241. [8] Malamateniou C, McFadden S, McQuinlan Y, et al. Artificial intelligence: guidance for clinical imaging and therapeutic radiography professionals, a summary by the Society of Radiographers AI working group[J]. Radiography(Lond), 2021, 27(4): 1192-1202. [9] Bodner J, Wykypiel H, Wetscher G, et al.First experiences with the da VinciTM operating robot in thoracic surgery[J]. Eur J Cardiothorac Surg, 2004, 25(5): 844-851. [10] Dissanayaka WL, Pitiyage G, Kumarasiri PVR, et al.Clinical and histopathologic parameters in survival of oral squamous cell carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012, 113(4): 518-525. [11] Katzman JL, Shaham U, Cloninger A, et al.DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network[J]. BMC Med Res Methodol, 2018, 18(1): 24-35. [12] Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. Matched computed tomography segmentation and demographic data for oropharyngeal cancer radiomics challenges[J]. Sci Data, 2017, 4: 170077. [13] Surveillance, Epidemiology,End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER Research Data, 8 Registries, Nov2021 Sub (1975-2020) - Linked To County Attributes - Time Dependent (1990-2020) Income/Rurality, 1969-2020 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2023, based on the November 2022 submission. [14] Lee C, Zame W, Yoon J, et al.Deephit: a deep learning approach to survival analysis with competing risks[C]//Proceedings of the AAAI conference on artificial intelligence. 2018. [15] Nagpal C, Li X, Dubrawski A.Deep survival machines: fully parametric survival regression and representation learning for censored data with competing risks[J]. IEEE J Biomed Health Inform, 2021, 25(8): 3163-3175. [16] Wang Z, Sun J.SurvTRACE: Transformers for survival analysis with competing events[C]//Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. 2022: 1-9. [17] AlTuwaijri AA, Alessa MA, Abuhaimed AA, et al. Lymph node yield as a prognostic factor in clinically node negative oral cavity squamous cell carcinoma[J]. Saudi Med J, 2021, 42(12): 1357-1361. [18] Sahoo AK, Pradhan C, Barik RK, et al.DeepReco: deep learning based health recommender system using collaborative filtering[J]. Computation, 2019, 7(2): 25. [19] Eraslan G, Avsec Ž, Gagneur J, et al.Deep learning: new computational modelling techniques for genomics[J]. Nat Rev Genet, 2019, 20(7): 389-403. |