[1] De Toledo IP, Conti Réus J, Fernandes M, et al.Prevalence of trigeminal neuralgia: a systematic review[J]. J Am Dent Assoc, 2016, 147(7): 570-576. [2] Di Stefano G, Maarbjerg S, Nurmikko T, et al.Triggering trigeminal neuralgia[J]. Cephalalgia, 2018, 38(6): 1049-1056. [3] Gambeta E, Chichorro JG, Zamponi GW, et al.Trigeminal neuralgia: an overview from pathophysiology to pharmacological treatments[J]. Mol Pain, 2020, 16: 1744806920901890. [4] 顿英俏, 纪俊宇, 张亚楠, 等. 三叉神经痛的研究进展[J]. 沈阳药科大学学报, 2020, 37(10): 949-955. [5] Höftberger R, Lassmann H.Inflammatory demyelinating diseases of the central nervous system[J]. Handb Clin Neurol, 2017, 145(3): 263-283. [6] Liu MX, Zhong J, Xia L, et al.A correlative analysis between inflammatory cytokines and trigeminal neuralgia or hemifacial spasm[J]. Neurol Res, 2019, 41(4): 335-340. [7] Andres KH, von Düring M, Muszynski K. Nerve fibres and their terminals of the dura mater encephali of the rat[J]. Anat Embryol (Berl), 1987,175(3): 289-301. [8] Messlinger K, Hanesch U, Baumgärtel M.Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity[J]. Anat Embryol (Berl), 1993, 188(3): 219-237. [9] Wang C, Liu H, Yang M, et al.RNA-Seq based transcriptome analysis of endothelial differentiation of bone marrow mesenchymal stem cells[J]. Eur J Vasc Endovasc Surg, 2020, 59(5): 834-842. [10] Ayturk U.RNA-seq in skeletal biology[J]. Curr Osteoporos Rep, 2019, 17(4): 178-185. [11] Ding W, You Z, Shen S, et al.An improved rodent model of trigeminal neuropathic pain by unilateral chronic constriction injury of distal infraorbital nerve[J]. J Pain, 2017, 18(8): 899-907. [12] Bennett GJ, Xie YK.A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man[J]. Pain,1988, 33(1): 87-107. [13] Araújo-Filho HG, Pereira EWM, Campos AR, et al.Chronic orofacial pain animal models-progress and challenges[J]. Expert Opin Drug Discov, 2018, 13(10): 949-964. [14] Deseure K, Hans GH.Chronic constriction injury of the rat's infraorbital nerve (IoN-CCI) to study trigeminal neuropathic pain[J]. J Vis Exp, 2015(103): 53167. [15] Love MI, Huber W, Anders S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550-570. [16] Jaggi AS, Jain V, Singh N.Animal models of neuropathic pain[J]. Fundam Clin Pharmacol, 2011, 25(1):1-28. [17] Challa SR.Surgical animal models of neuropathic pain: pros and cons[J]. Int J Neurosci, 2015, 125(3): 170-174. [18] Sacerdote P, Franchi S, Trovato AE, et al.Transient early expression of TNF-a sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy[J]. Neurosci Lett, 2008, 436(2): 210-213. [19] Martucci C, Trovato AE, Costa B, et al.The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice[J]. Pain, 2008, 137(1): 81-95. [20] De Vry J, Kuhl E, Franken-Kunkel P, et al.Pharmacological characterization of the chronic constriction injury model of neuropathic pain[J]. Eur J Pharmacol, 2004, 491(2-3): 137-148. [21] Beam TA, Loudermilk EF, Kisor DF.Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia[J]. Physiol Genomics, 2017, 49(2): 81-87. [22] Sangkuhl K, Dirksen RT, Alvarellos ML, et al.PharmGKB summary: very important pharmacogene information for CACNA1S[J]. Pharmacogenet Genomics, 2020, 30(2): 34-44. [23] Schartner V, Romero NB, Donkervoort S, et al.Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy[J]. Acta Neuropathol, 2017, 133(4): 517-533. [24] Mei Y, Barrett JE, Hu H.Calcium release-activated calcium channels and pain[J]. Cell Calcium, 2018, 74: 180-185. [25] Dou Y, Xia J, Gao R, et al.Orai1 plays a crucial role in central sensitization by modulating neuronal excitability[J]. J Neurosci, 2018, 38(4): 887-900. [26] Gao X, Han S, Huang Q, et al.Calcium imaging in population of dorsal root ganglion neurons unravels novel mechanisms of visceral pain sensitization and referred somatic hypersensitivity[J]. Pain, 2021, 162(4): 1068-1081. [27] Price RD, Yamaji T, Yamamoto H, et al.FK1706, a novel non-immunosuppressive immunophilin: neurotrophic activity and mechanism of action[J]. Eur J Pharmacol, 2005, 509(1): 9-11. [28] Yamazaki S, Yamaji T, Murai N, et al.FK1706, a novel non-immunosuppressive immunophilin ligand, modifies gene expression in the dorsal root ganglia during painful diabetic neuropathy[J]. Neurol Res, 2012, 34(5):469-477. [29] Fatoba O, Itokazu T, Yamashita T.Complement cascade functions during brain development and neurodegeneration[J]. FEBS J, 2022, 289(8):2085-2109. [30] Warwick CA, Keyes AL, Woodruff TM, et al.The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain[J]. J Biol Chem, 2021, 297(3): 101085. [31] Shutov LP, Warwick CA, Shi X, et al.The complement system component C5a produces thermal hyperalgesia via macrophage-to-nociceptor signaling that requires NGF and TRPV1[J]. J Neurosci, 2016, 36(18): 5055-5070. [32] Wu S, Lutz BM, Miao X, et al.Dorsal root ganglion transcriptome analysis fol- lowing peripheral nerve injury in mice[J]. Mol Pain, 2016, 12: 1744806916629048. [33] Stevens AM, Liu L, Bertovich D, et al.Differential expression of neuroinflammatory mRNAs in the rat sciatic nerve following chronic constriction injury and pain-relieving nanoemulsion NSAID delivery to infiltrating macrophages[J]. Int J Mol Sci, 2019, 20(21): 5269-5292. [34] Uttam S, Wong C, Amorim IS, et al.Translational profiling of dorsal root ganglia and spinal cord in a mouse model of neuropathic pain[J]. Neurobiol Pain, 2018, 4(1): 35-44. [35] Stevens AM, Saleem M, Deal B, et al.Targeted cyclooxygenase-2 inhibiting nanomedicine results in pain-relief and differential expression of the RNA transcriptome in the dorsal root ganglia of injured male rats[J]. Mol Pain, 2020,16: 1744806920943309. |