[1] 吴狄, 邓祥, 王坤, 等. 蛋白酪氨酸磷酸酶(PTPs)及其抑制剂的研究进展 [J]. 广州化工, 2012,40(9): 11-12.
[2] Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! [J]. Prog Mol Biol Transl Sci, 2012, 106: 253-306.
[3] Nikolaienko RM, Agyekum B, Bouyain S. Receptor protein tyrosine phosphatases and cancer: new insights from structural biology [J]. Cell Adh Migr, 2012, 6(4): 356-364.
[4] Ostman A, Hellberg C, Böhmer FD. Protein-tyrosine phosphatases and cancer[J]. Nat Rev Cancer, 2006, 6(4): 307-320.
[5] Hunter T. Signaling-2000 and beyond[J]. Cell, 2000, 100(1): 113-127.
[6] Makinoshima H, Ishii G, Kojima M, et al. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma [J]. BMC Cancer, 2012, 12: 537.
[7] Yi T, Lindner D. The role and target potential of protein tyrosine phosphatases in cancer[J]. Curr Oncol Rep, 2008, 10(2):114-121.
[8] Perez-Pinera P, Zhang W, Chang Y, et al. Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation [J]. J Biol Chem, 2007, 282(39): 28683-28690.
[9] Wu CW, Kao HL, Li AF, et al. Protein tyrosine-phosphatase expression profiling in gastric cancer tissues[J]. Cancer Lett, 2006, 242(1): 95-103.
[10] 翦新春, 沈子华, 刘蜀凡. 口腔黏膜下纤维性变(附2例报告) [J]. 临床口腔医学杂志, 1985, 1(1): 12-13.
[11] Paymaster JC. Cancer of the buccal mucosa. A clinical study of 650 cases in Indian patients [J]. Cancer, 1956, 9(3): 431-435.
[12] Murti PR, Bhonsle RB, Pindborg JJ, et al. Malignant transformation rate in oral submucous fibrosis over a 17-year period[J]. Community Dent Oral Epidemiol, 1985, 13(6): 340-341.
[13] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines [J]. IARC Monogr Eval Carcinog Risks Hum, 2004, 85: 1-334.
[14] Garzino-Demo P, Dell'Acqua A, Dalmasso P, et al. Clinicopathological parameters and outcome of 245 patients operated for oral squamous cell carcinoma [J]. J Craniomaxillofac Surg, 2006, 34(6): 344-350.
[15] 郭峰. OSF癌变侵袭转移的临床研究及其与Wnt途径异常激活关系的初步研究[D]. 长沙: 中南大学, 2009.
[16] Song JJ, Liu J, Tolia NH, et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes [J]. Nat Struct Biol, 2003, 10(12): 1026-1032.
[17] 史一搏, 赵涵芳. 蛋白酪氨酸磷酸酶家族及其生理作用 [J]. 生命的化学, 2007, 27(4): 312-314.
[18] Shitara K, Yamada H, Watanabe K, et al. Brain-specific receptor-type protein-tyrosine phosphatase RPTP beta is a chondroitin sulfate proteoglycan in vivo [J]. J Biol Chem, 1994, 269(31): 20189-20193.
[19] Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer [J]. Cancer Lett, 2004, 204(2): 127-143.
[20] Liu YT, Shang D, Akatsuka S, et al. Chronic oxidative stress causes amplification and overexpression of ptprz1 protein tyrosine phosphatase to activate beta-catenin pathway[J]. Am J Pathol, 2007, 171(6): 1978-1988.
[21] Tamura H, Fukada M, Fujikawa A, et al. Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP [J]. Neurosci Lett, 2006, 399(1-2): 33-38.
[22] Pariser H, Perez-Pinera P, Ezquerra L, et al. Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta [J]. Biochem Biophys Res Commun, 2005, 335(1): 232-239.
[23] Pariser H, Ezquerra L, Herradon G, et al. Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin [J]. Biochem Biophys Res Commun, 2005, 332(3): 664-669.
[24] Meng K, Rodriguez-Pena A, Dimitrov T, et al. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta [J]. Proc Natl Acad Sci USA, 2000, 97(6): 2603-2608.
[25] Benaim G, Villalobo A. Phosphorylation of calmodulin. Functional implications[J]. Eur J Biochem, 2002, 269(15): 3619-3631.
[26] Corti C, Leclerc LE, Quadroni M, et al. Tyrosine phosphorylation modulates the interaction of calmodulin with its target proteins [J]. Eur J Biochem, 1999, 262(3): 790-802.
[27] Williams EL, Djamgoz MB. Nitric oxide and metastatic cell behaviour [J]. Bioessays, 2005, 27(12): 1228-1238.
[28] Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression [J]. Nat Rev Cancer, 2006, 6(7): 521-534.
[29] Eyler CE, Wu Q, Yan K, et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2 [J]. Cell, 2011, 146(1): 53-66.
[30] Wang V, Davis DA, Veeranna RP, et al. Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1) by hypoxia inducible factor-2 alpha [J]. PLoS One, 2010, 5(3): e9641.
[31] Jeong HC, Kim GI, Cho SH, et al. Proteomic analysis of human small cell lung cancer tissues: up-regulation of coactosin-like protein-1 [J]. J Proteome Res, 2011, 10(1): 269-276. |