[1] Yu KH, Beam AL, Kohane IS.Artificial intelligence in healthcare[J]. Nat Biomed Eng, 2018, 2(10): 719-731. [2] Deo RC.Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930. [3] Handelman GS, Kok HK, Chandra RV, et al.eDoctor: machine learning and the future of medicine[J]. J Intern Med, 2018, 284(6): 603-619. [4] Khanagar SB, Al-ehaideb A, Maganur PC, et al. Developments, application, and performance of artificial intelligence in dentistry -a systematic review[J]. J Dent Sci, 2021, 16(1): 508-522. [5] Troiano G, Nibali L, Petsos H, et al.Development and international validation of logistic regression and machine-learning models for the prediction of 10-year molar loss[J]. J Clin Periodontol, 2022, 50(3): 348-357. [6] Lee CT, Kabir T, Nelson J, et al.Use of the deep learning approach to measure alveolar bone level[J]. J Clin Periodontol, 2022, 49(3): 260-269. [7] Xiang J, Huang W, He Y, et al.Construction of artificial neural network diagnostic model and analysis of immune infiltration for periodontitis[J]. Front Genet, 2022, 13: 1041524. [8] Li W, Liang Y, Zhang X, et al.A deep learning approach to automatic gingivitis screening based on classification and localization in RGB photos[J]. Sci Rep, 2021, 11(1): 16831. [9] Cha JY, Yoon HI, Yeo IS, et al.Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs[J]. J Clin Med, 2021, 10(5): 1009. [10] Cerda Mardini D, Cerda Mardini P, Vicuña Iturriaga DP, et al.Determining the efficacy of a machine learning model for measuring periodontal bone loss[J]. BMC Oral Health, 2024, 24(1): 100. [11] Yang H, Zhao A, Chen Y, et al.Exploring the potential link between MitoEVs and the immune microenvironment of periodontitis based on machine learning and bioinformatics methods[J]. BMC Oral Health, 2024, 24(1): 169. [12] Aravindraja C, Jeepipalli S, Duncan W, et al.Unique miRomics expression profiles in tannerella forsythia-infected mandibles during periodontitis using machine learning[J]. Int J Mol Sci, 2023, 24(22): 16393. [13] Pietropaoli D, Del Pinto R, Ferri C, et al.Association between periodontal inflammation and hypertension using periodontal inflamed surface area and bleeding on probing[J]. J Clin Periodontol, 2019, 47(2): 160-172. [14] Pietropaoli D, Monaco A, D’Aiuto F, et al. Active gingival inflammation is linked to hypertension[J]. J Hypertens, 2020, 38(10): 2018-2027. [15] Alqahtani H, Koroukian S, Stange K, et al.Identifying factors associated with periodontal disease using machine learning[J]. J Int Soc Prev Community Dent, 2022, 12(6): 612-622. [16] Eriksson K, Lundmark A, Delgado LF, et al.Salivary microbiota and host-inflammatory responses in periodontitis affected individuals with and without rheumatoid arthritis[J]. Front Cell Infect Microbiol, 2022, 12: 841139. [17] Wilensky A, Frank N, Mizraji G, et al.Periodontitis and metabolic syndrome: statistical and machine learning analytics of a nationwide study[J]. Bioengineering (Basel), 2023, 10(12): 1384. [18] Yan P, Ke B,Fang X.Bioinformatics reveals the pathophysiological relationship between diabetic nephropathy and periodontitis in the context of aging[J]. Heliyon, 2024, 10(2): e24872. [19] 赵丹丹, 郭子怡, 郭易阳,等. 基于机器学习和生物信息学分析的铜死亡相关基因在牙周炎中的作用研究[J]. 中华老年口腔医学杂志, 2023, 21(6): 332-336. [20] 程子健, 黄鹏, 戚刚刚,等. 基于卷积神经网络的牙周炎智能诊断[J]. 兰州大学学报(医学版), 2022, 48(10): 32-35, 42. [21] 张惠媛, 张雅萌, 阮世红,等. 基于唾液炎症因子水平预测牙周状况的机器学习模型的建立[J]. 北京口腔医学, 2022, 30(4): 248-254. [22] Highfield J.Diagnosis and classification of periodontal disease[J]. Aust Dent J, 2009, 54(Suppl 1): S11-S26. [23] Guler Ayyildiz B, Karakis R, Terzioglu B, et al.Comparison of deep learning methods for the radiographic detection of patients with different periodontitis stages[J]. Dentomaxillofac Radiol, 2024, 53(1): 32-42. [24] Sattler F, Wiedemann S, Muller KR, et al.Robust and communication-efficient federated learning from Non-i.i.d. Data[J]. IEEE Trans Neural Netw Learn Syst, 2020, 31(9): 3400-3413. [25] Shorten C, Khoshgoftaar TM, Furht B.Text data augmentation for deep learning[J]. J Big Data, 2021, 8(1): 101. [26] Ahmed Z, Degroat W, Abdelhalim H, et al.Deciphering genomic signatures associating human dental oral craniofacial diseases with cardiovascular diseases using machine learning approaches[J]. Clin Oral Investig, 2024, 28(1): 52. [27] Handy DE, Loscalzo J.The role of glutathione peroxidase-1 in health and disease[J]. Free Radic Biol Med, 2022, 188: 146-161. [28] Matzaraki V, Kumar V, Wijmenga C, et al.The MHC locus and genetic susceptibility to autoimmune and infectious diseases[J]. Genome Biol, 2017, 18(1): 76. |