[1] Abtahi S, Chen X, Shahabi S, et al.Resorbable membranes for guided bone regeneration: critical features, potentials, and limitations[J]. ACS Mater, 2023, 3(5): 394-417. [2] 曹钰彬, 刘畅, 潘韦霖, 等. 引导骨再生屏障膜改良的研究进展[J]. 华西口腔医学杂志, 2019, 37(3): 325-329. [3] Elgali I, Omar O, Dahlin C, et al.Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017, 125(5): 315-337. [4] Aprile P, Letourneur D, Simon-Yarza T.Membranes for guided bone regeneration: a road from bench to bedside[J]. Adv Healthc Mater, 2020, 9(19): e2000707. [5] 王培. 聚己内酯类生物高分子支架在组织工程领域的应用[J].中国组织工程研究, 2021, 25(34): 5506-5510. [6] Antunovic F, Tolosa F, Klein C, et al.Polycaprolactone-based scaffolds for guided tissue regeneration in periodontal therapy: a systematic review[J]. J Appl Biomater Funct Mater, 2023, 21: 22808000231211416. [7] 王学川, 赵文莹, 张慧洁. 明胶的改性及其在胶黏剂中的应用研究进展[J]. 陕西科技大学学报, 2022, 40(4): 100-108. [8] 赵守进, 刘哲鹏, 付子让, 等. 静电纺丝在组织工程学中的应用进展[J]. 生物医学工程学进展, 2021, 42(3): 149-153, 163. [9] Shams Z, Akbari B, Rajabi S, et al.Bioinspired device improves the cardiogenic potential of cardiac progenitor cells[J]. Cell J, 2021, 23(1): 129-136. [10] Lim WL, Chowdhury SR, Ng MH, et al.Physicochemical properties and biocompatibility of electrospun polycaprolactone/gelatin nanofibers[J]. Int J Environ Res Public Health, 2021, 18(9): 4764. [11] 王焱. 功能性引导骨再生屏障膜的组织工程设计[J]. 口腔材料器械杂志, 2023, 32(4): 229-234. [12] Teng SH, Lee EJ, Wang P, et al.Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration[J]. J Biomed Mater Res B Appl Biomater, 2008, 87(1): 132-138. [13] Yao R, He J, Meng G, et al.Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses[J]. J Biomater Sci Polym Ed, 2016, 27(9): 824-838. [14] 牛小连, 刘柯君, 廖子明, 等. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355. [15] 武小童, 何儿, 刘来俊, 等. 基于聚己内酯纤维的组织工程支架研究进展[J]. 中国生物医学工程学报, 2020, 39(5): 611-620. [16] 徐燕, 魏波, 周进, 等. 多巴胺表面修饰/负载软骨源性形态发生蛋白1的3D打印聚己内酯-羟基磷灰石三维多孔支架促进人BMSCs成软骨分化的实验研究[J]. 中国修复重建外科杂志, 2018, 32(2): 215-222. [17] Cao J, Geng X, Wen J, et al.The penetration and phenotype modulation of smooth muscle cells on surface heparin modified poly(ε-caprolactone) vascular scaffold[J]. J Biomed Mater Res A, 2017, 105(10): 2806-2815. [18] Oberbossel G, Probst C, Giampietro VR, et al.Plasma afterglow treatment of polymer powders: process parameters, wettability improvement, and aging effects[J]. Plasma Process Polym, 2017, 14(3): 1-10. [19] Mohammed Z, Jeelani S, Rangari V.Effect of low-temperature plasma treatment on surface modification of polycaprolactone pellets and thermal properties of extruded filaments[J]. JOM, 2020, 72(4):1523-1532. [20] Steffi C, Wang D, Kong CH, et al.Estradiol-loaded poly(ε-caprolactone)/silk fibroin electrospun microfibers decrease osteoclast activity and retain osteoblast function[J]. ACS Appl Mater Interfaces, 2018, 10(12): 9988-9998. [21] Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, et al.Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80: 75-87. [22] 李东方. 贻贝启发的明胶表面改性碳纳米管的制备和生物相容性研究[D]. 南昌: 南昌大学, 2021. [23] Mahmoudi Saber M.Strategies for surface modification of gelatin-based nanoparticles[J]. Colloids Surf B Biointerfaces, 2019, 183: 110407. [24] Weiss AV, Fischer T, Iturri J, et al.Mechanical properties of gelatin nanoparticles in dependency of crosslinking time and storage[J]. Colloids Surf B Biointerfaces, 2019, 175: 713-720. [25] 赵文文. 骨软骨修复用静电纺丝纤维膜/细胞层的构建及性能研究[D]. 北京: 北京化工大学, 2020. [26] Kara A, Distler T, Polley C, et al.3D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility study[J]. Mater Today Bio, 2022, 15: 100309. [27] 李斯日古楞, 胡晓文. 纳米羟基磷灰石/明胶仿生复合材料的制备及其细胞相容性[J]. 中南大学学报(医学版), 2014, 39(9): 949-958. [28] Metwally S, Ferraris S, Spriano S, et al.Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration[J]. Mater Des, 2020, 194: 108915. [29] Solar P, Kylián O, Marek A, et al.Particles induced surface nanoroughness of titanium surface and its influence on adhesion of osteoblast-like MG-63 cells[J]. Appl Surf Sci, 2015, 324: 99-105. [30] 仲宣树, 刘宗建, 耿雪, 等. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165. [31] Minetti M, Bernardini G, Biazzo M, et al.Padina pavonica extract promotes in vitro differentiation and functionality of human primary osteoblasts[J]. Mar Drugs, 2019, 17(8): 473. [32] Vimalraj S, Arumugam B, Miranda PJ, et al.Runx2: structure, function, and phosphorylation in osteoblast differentiation[J]. Int J Biol Macromol, 2015, 78: 202-208. [33] Bai RJ, Li YS, Zhang FJ.Osteopontin, a bridge links osteoarthritis and osteoporosis[J]. Front Endocrinol (Lausanne), 2022, 13: 1012508. [34] Peng L, Wu F, Cao M, et al.Effects of different physical factors on osteogenic differentiation[J]. Biochimie, 2023, 207: 62-74. [35] Jönsson S, Hjorth-Hansen H, Olsson B, et al.Imatinib inhibits proliferation of human mesenchymal stem cells and promotes early but not late osteoblast differentiation in vitro[J]. J Bone Miner Metab, 2012, 30(1): 119-123. [36] 王旸昊, 王伟舟, 段浩, 等. 不同材料因素影响骨髓间充质干细胞的增殖及成骨分化[J]. 中国组织工程研究, 2020, 24(28): 4429-4436. [37] Allan C, Ker A, Smith CA, et al.Osteoblast response to disordered nanotopography[J]. J Tissue Eng, 2018, 9: 2041731418784098. [38] 梁文强, 杨国清, 张怀斌, 等. 成骨细胞在不同因素影响下黏附作用的研究进展[J]. 医学综述, 2022, 28(3): 417-421. [39] Chen Z, Bachhuka A, Wei F, et al.Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration[J]. Nanoscale, 2017, 9(46): 18129-18152. [40] Zhu Y, Mao Z, Gao C.Control over the gradient differentiation of rat BMSCs on a PCL membrane with surface-immobilized alendronate gradient[J]. Biomacromolecules, 2013, 14(2): 342-349. [41] 朱旸. PCL膜表面阿仑膦酸钠梯度构建及其诱导干细胞定域分化的研究[D]. 杭州: 浙江大学, 2012. [42] Kilian KA, Bugarija B, Lahn BT, et al.Geometric cues for directing the differentiation of mesenchymal stem cells[J]. Proc Natl Acad Sci USA, 2010, 107(11): 4872-4877. |