[1] Aykent F, Yondem I, Ozyesil AG, et al.Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion[J]. J Prosthet Dent, 2010, 103(4): 221-227. [2] Glauser S, Astasov-Frauenhoffer M, Müller JA, et al.Bacterial colonization of resin composite cements: influence of material composition and surface roughness[J]. Eur J Oral Sci, 2017, 125(4): 294-302. [3] Mercieca S, Caligari Conti M, Buhagiar J, et al.Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments[J]. J Appl Biomater Funct Mater, 2018, 16(1): 47-54. [4] Lucchetti MC, Fratto G, Valeriani F, et al.Cobalt-chromium alloys in dentistry: An evaluation of metal ion release[J]. J Prosthet Dent, 2015,114(4):602-608. [5] Lages RB, Bridi EC, Pérez CA, et al.Salivary levels of nickel, chromium, iron, and copper in patients treated with metal or esthetic fixed orthodontic appliances: A retrospective cohort study[J]. J Trace Elem Med Biol, 2017,40: 67-71. [6] Qu Y, Lu X, Huang Y, et al.Mechanisms of cytotoxicity of nickel ions based on gene expression profiles[J]. Biomaterials, 2009, 30(2): 141-148. [7] Reclaru L, Unger RE, Kirkpatrick CJ, et al.Ni-Cr based dental alloys;Ni release, corrosion and biological evaluation[J]. Mater Sci Eng C Mater Biol Appl, 2012, 32(6): 1452-1460. [8] Zhang Y, Xiao F, Liu XM, et al.Cr(VI) induces cytotoxicity in vitro through activation of ROS-mediated endoplasmic reticlulum stress and mitochondrial dysfunction via the P13K/Akt signaling pathway[J]. Toxicol In Vitro, 2017,41: 232-244. [9] Karov J, Hinberg I.Galvanic corrosion of selected dental alloys[J]. J Oral Rehabil, 2001, 28(3): 212-219. [10] 孟贺, 韩东, 战德松. 5种牙科合金对小鼠成纤维细胞毒性及凋亡相关基因的表达[J].中华口腔医学杂志, 2009, 44(8): 497-501. [11] 杜雅, 黄克强, 芦琳, 等. 4种烤瓷基底冠金属对人牙龈成纤维细胞分泌前列腺素E2和环加氧酶2的影响[J]. 中华口腔医学杂志, 2012, 47(7): 431-434. [12] ISO 10271 Standard.Dental metallic materials-corrosion test methodsSO 10271 Standard.Dental metallic materials-corrosion test methods[S]. Switzerland: ISO Geneva, 2011. [13] 林红. 口腔材料学[M]. 第2版. 北京: 北京大学医学出版社, 2013: 21-22. [14] Popov BN.Corrosion engineering: principles and solved problems[M]. Netherlands: Elsevier B.V., 2015: 239-287. [15] Ciszewski A, Baraniak M, Brychczyńska MU.Corrosion by galvanic coupling between amalgam and different chromium-based alloys[J]. Dent Mater, 2007, 23(10): 1256-1261. [16] Manaranche C, Hornberger H.A proposal for the classification of dental alloys according to their resistance to corrosion[J].Dent Mater, 2007, 23(11): 1428-1437. [17] Imirzalioglu P, Alaaddinoglu E, Yilmaz Z, et al.Influence of recasting different types of dental alloys on gingival fibroblast cytotoxicity[J]. J Prosthet Dent, 2012, 107(1): 24-33. [18] McGinley EL, Moran GP, Fleming GJ. Biocompatibility effects of indirect exposure of base-metal dental casting alloys to a human-derived three- dimensional oral mucosal model[J]. J Dent, 2013, 41(11): 1091-1100. [19] Teranaka A, Tomiyama K, Ohashi K, et al.Relevance of surface characteristics in the adhesiveness of polymicrobial biofilms to crown restoration materials[J]. J Oral Sci, 2018, 60(1): 129-136. [20] Ammar Y, Swailes D, Bridgens B, et al.Influence of surface roughness on the initial formation of biofilm[J]. Surf Coat Technol, 2015, 284: 410-416. [21] Kim SK, Park IJ, Lee DY, et al.Influence of surface roughness on the electrochemical behavior of carbon steel[J]. J Appl Electrochem, 2013,43(5): 507-514. [22] Evgeny B, Hughes T, Eskin D.Effect of surface roughness on corrosion behavior of low carbon steel in inhibited 4M Hydrochloric acid under laminar and turbulent flow conditions[J]. Corros Sci, 2016, 103(2): 196-205. |