[1] Reich E, Hiller KA.Reasons for tooth extraction in the western states of Germany[J]. Community Dent Oral Epidemiol, 2010, 21(6): 379-383. [2] Seo BM, Miura M, Gronthos S, et al.Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429): 149-155. [3] Zhou Y, Guan X, Zhu Z, et al.Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: effect of microvibration and role of ERK1/2 activation[J]. Eur Cell Mater, 2011, 22(7): 12-25. [4] Zhao Q, Lu Y, Yu H, et al.Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal[J]. PLoS One, 2017, 12(3): e0172954. [5] Weber JF, Waldman SD.Stochastic resonance is a method to improve the biosynthetic response of chondrocytes to mechanical stimulation[J]. J Orthop Res, 2016, 34(2): 231-239. [6] Judex S, Lei X, Han D, et al.Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude[J]. J Biomech, 2007, 40(6): 1333-1339. [7] Ozcivici E, Luu Y K, Rubin C T, et al.Low-level vibrations retain bone marrow's osteogenic potential and augment recovery of trabecular bone during reambulation[J]. PLoS One, 2010, 5(6): e11178. [8] Garman R, Gaudette G, Donahue LR, et al.Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation[J]. J Orthop Res, 2010, 25(6): 732-740. [9] Rubin CT, Capilla E, Luu YK, et al.Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals[J]. Proc Natl Acad Sci USA, 2007, 104(45): 17879-17884. [10] Rubin C, Turner AS, Müller R, et al.Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention[J]. J Bone Miner Res, 2002, 17(2): 349-357. [11] Prè D, Ceccarelli G, Gastaldi G, et al.The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequency vibration treatment[J]. Bone, 2011, 49(2):295-303. [12] Zhang C, Li J, Zhang L, et al.Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells[J]. Arch Oral Biol, 2012, 57(10): 1395-1407. [13] Lu Y, Zhao Q, Liu Y, et al.Vibration loading promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells via p38 MAPK signaling pathway[J]. J Biomech, 2018, 71: 67-75. [14] Ingber DE.Cellular mechanotransduction: putting all the pieces together again[J]. FASEB J, 2006, 20(7): 811-827. [15] Jaalouk DE, Lammerding J .Mechanotransduction gone awry[J]. Nat Rev Mol Cell Biol, 2009, 10(1): 63-73. [16] Mauney JR, Sjostorm S, Blumberg J, et al.Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro[J]. Calcif Tissue Int, 2004, 74(5): 458-468. [17] Chan ME, Uzer G, Rubin CT .The potential benefits and inherent risks of vibration as a non-drug therapy for the prevention and treatment of osteoporosis[J]. Curr Osteoporos Rep, 2013, 11(1): 36-44. [18] Jacobs PL, Burns P .Acute enhancement of lower-extremity dynamic strength and flexibility with whole-body vibration[J]. J Strength Cond Res, 2009, 23(1): 51-57. [19] Luu YK, Capilla E, Rosen CJ, et al.Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity[J]. J Bone Miner Res, 2010, 24(1): 50-61. [20] Kim IS, Song YM, Lee B, et al.Human mesenchymal stromal cells are mechanosensitive to vibration stimuli[J]. J Dent Res, 2012, 91(12): 1135-1140. [21] Yadav S, Dobie T, Assefnia A, et al.Effect of low-frequency mechanical vibration on orthodontic tooth movement[J]. Am J Orthod Dentofacial Orthop, 2015, 148(3): 440-449. [22] Jing D, Xiao J, Li X, et al.The effectiveness of vibrational stimulus to accelerate orthodontic tooth movement: a systematic review[J]. BMC Oral Health, 2017, 17(1): 143. |