[1] 中华医学会骨质疏松和骨矿盐疾病分会.原发性骨质疏松症诊疗指南(2022)[J].中国全科医学, 2023, 26(14): 1671-1691. [2] 中国疾病预防控制中心慢性非传染性疾病预防控制中心, 中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查报告(2018)[M]. 北京: 人民卫生出版社, 2021:10-12. [3] Lu GD, Cheng P, Liu T, et al.BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis[J]. Front Cell Dev Biol, 2020, 8(1): 608521. [4] Li Y, Yang F, Gao M, et al.miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO[J]. Mol Ther Nucleic Acids, 2019, 17(1): 590-600. [5] Yang C, Liu X, Zhao K, et al.miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects[J]. Stem Cell Res Ther, 2019, 10(1): 65-75. [6] Zhang YL, Liu L, Peymanfar Y, et al.Roles of microRNAs in osteogenesis or adipogenesis differentiation of bone marrow stromal progenitor cells[J]. Int J Mol Sci, 2021, 22(13): 7210-7228. [7] Xu R, Shen X, Si Y, et al.MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment[J]. Aging Cell, 2018, 17(4): e12794. [8] Qiu T, Li H, Lu T, et al.GATA4 regulates osteogenic differentiation by targeting miR144-3p[J]. Exp Ther Med, 2022, 23(1): 83-91. [9] Yu T, You X, Zhou H, et al.MiR-16-5p regulates postmenopausal osteoporosis by directly targeting VEGFA[J]. Aging (Albany NY), 2020, 12(10): 9500-9514. [10] Cheng F, Yang MM, Yang RH.MiRNA-365a-3p promotes the progression of osteoporosis by inhibiting osteogenic differentiation via targeting RUNX2[J]. Eur Rev Med Pharmacol Sci, 2019, 23(18): 7766-7774. [11] Hu L, Xie X, Xue H, et al.MiR-1224-5p modulates osteogenesis by coordinating osteoblast/osteoclast differentiation via the Rap1 signaling target ADCY2[J]. Exp Mol Med, 2022, 54(7): 961-972. [12] Ström O, Borgström F, Kanis JA, et al.Osteoporosis: burden, health care provision and opportunities in the EU: a report prepared in collaboration with the International Osteoporosis Foundation(IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA)[J]. Arch Osteoporos, 2011, 6: 59-155. [13] Sözen T, Özisik L, Basaran NC.An overview and management of osteoporosis[J]. Eur J Rheumatol, 2017, 4(1): 46-56. [14] Xiao PL, Cui AY, Hsu CJ, et al.Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis[J]. Osteoporos Int, 2022, 33(10): 2137-2153. [15] Slagter KW, Raghoebar GM, Vissink A.Osteoporosis and edentulous jaws[J]. Int J Prosthodont, 2008, 21(1): 19-26. [16] Matsubara T, Suardita K, Ishii M, et al.Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells[J]. J Bone Miner Res, 2005, 20(3): 399-409. [17] Chai Y, Maxson RE Jr.Recent advances in craniofacial morphogenesis[J]. Dev Dyn, 2006, 235(9): 2353-2375. [18] Endo T.Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion[J]. Bone, 2015, 80(1): 2-13. [19] Aghaloo TL, Chaichanasakul T, Bezouglaia O, et al.Osteogenic potential of mandibular vs. long-bone marrow stromal cells[J]. J Dent Res, 2010, 89(11): 1293-1298. [20] Lloyd B, Tee BC, Headley C, et al.Similarities and differences between porcine mandibular and limb bone marrow mesenchymal stem cells[J]. Arch Oral Biol, 2017, 77(1): 1-11. [21] Hu L, Yin C, Zhao F, et al.Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment[J]. Int J Mol Sci, 2018, 19(2): 360-379. [22] Shim J, Kim KT, Kim KG, et al.Safety and efficacy of Wharton's jelly-derived mesenchymal stem cells with teriparatide for osteoporotic vertebral fractures: a phase I/IIa study[J]. Stem Cells Transl Med, 2021, 10(4): 554-567. [23] Wang L, Liu S, Zhao Y, et al.Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass[J]. Cell Death Differ, 2015, 22(10): 1654-1664. [24] Wang L, Zhao Y, Liu Y, et al.IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling[J]. Stem Cells, 2013, 31(7): 1383-1395. [25] Mavropoulos A, Kiliaridis S, Rizzoli R, et al.Normal masticatory function partially protects the rat mandibular bone from estrogen-deficiency induced osteoporosis[J]. J Biomech, 2014, 47(11): 2666-2671. [26] 赵献银, 李晓红, 朱晓姝, 等. 大鼠去势后对颌骨和股骨骨小梁结构的影响[J]. 西安交通大学学报(医学版), 2004, 25(3): 285-287. [27] Akintoye SO.The distinctive jaw and alveolar bone regeneration[J]. Oral Dis, 2018, 24(1-2): 49-51. [28] Mavropoulos A, Odman A, Ammann P, et al.Rehabilitation of masticatory function improves the alveolar bone architecture of the mandible in adult rats[J]. Bone, 2010, 47(3): 687-692. [29] 俞悦, 吴佳益, 汪成林, 等. 颌骨与不同部位来源骨髓间充质干细胞应用潜能的比较[J]. 口腔生物医学, 2023, 14(1): 46-49. [30] Ren S, Jiao G, Zhang L, et al.Bionic tiger-bone powder improves bone microstructure and bone biomechanical strength of ovariectomized rats[J]. Orthop Surg, 2021, 13(3): 1111-1118. [31] Huang X, Cheng B, Song W, et al.Superior CKIP-1 sensitivity of orofacial bone-derived mesenchymal stem cells in proliferation and osteogenic differentiation compared to long bone-derived mesenchymal stem cells[J]. Mol Med Rep, 2020, 22(2): 1169-1178. [32] Cao W, Yang X, Hu XH, et al.miR-344d-3p regulates osteogenic and adipogenic differentiation of mouse mandibular bone marrow mesenchymal stem cells[J]. PeerJ, 2023, 11: e14838. [33] Sims NA.The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology[J]. Exp Mol Med, 2020, 52(8): 1185-1197. [34] Adam S, Simon N, Steffen U, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function[J]. Sci Transl Med, 2020, 12(530): eaay4447. [35] Kido S, Kuriwaka-Kido R, Imamura T, et al.Mechanical stress induces Interleukin-11 expression to stimulate osteoblast differentiation[J]. Bone, 2009, 45(6): 1125-1132. [36] Bellido T, Borba VZ, Roberson P, et al.Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation[J]. Endocrinology, 1997, 138(9): 3666-3676. [37] Kyriakis JM, Avruch J.Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update[J]. Physiol Rev, 2012, 92(2): 689-737. [38] 史东梅, 董明, 陆颖, 等. PI3K/Akt信号通路与骨破坏:问题与机制[J]. 中国组织工程研究, 2020, 24(23): 3716-3722. [39] Mukherjee A, Rotwein P.Akt promotes BMP2-mediated osteoblast differentiation and bone development[J]. J Cell Sci, 2009, 122(Pt 5): 716-726. [40] Zhang XY, Li HN, Chen F, et al.Icariin regulates miR-23a-3p-mediated osteogenic differentiation of BMSCs via BMP-2/Smad5/Runx2 and WNT/β-catenin pathways in osteonecrosis of the femoral head[J]. Saudi Pharm J, 2021, 29(12): 1405-1415. [41] Gao Y, Chen N, Fu Z, et al.Progress of Wnt signaling pathway in osteoporosis[J]. Biomolecules, 2023, 13(3): 483-505. [42] Joeng KS, Schumacher CA, Zylstra-Diegel CR, et al.Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo[J]. Dev Biol, 2011, 359(2): 222-229. [43] Hers I, Vincent EE, Tavaré JM.Akt signalling in health and disease[J]. Cell Signal, 2011, 23(10): 1515-1527. [44] Ulici V, Hoenselaar KD, Agoston H, et al.The role of Akt1 in terminal stages of endochondral bone formation: angiogenesis and ossification[J]. Bone, 2009, 45(6): 1133-1145. [45] Gu YX, Du J, Si MS, et al.The roles of PI3K/Akt signaling pathway in regulating MC3T3-E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces[J]. J Biomed Mater Res A, 2013, 101(3): 748-754. [46] Lu N, Malemud CJ.Extracellular signal-regulated kinase: a regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression[J]. Int J Mol Sci, 2019, 20(15): 3792-3810. [47] Fennen M, Pap T, Dankbar B.Smad-dependent mechanisms of inflammatory bone destruction[J]. Arthritis Res Ther, 2016, 18(1): 279-289. [48] Yasui T, Kadono Y, Nakamura M, et al.Regulation of RANKL-induced osteoclastogenesis by TGF-β through molecular interaction between Smad3 and Traf6[J]. J Bone Miner Res, 2011, 26(7): 1447-1456. |