上海口腔医学 ›› 2013, Vol. 22 ›› Issue (5): 498-503.

• 基础研究 • 上一篇    下一篇

前方牵引矫治器不同力值反作用力的三维有限元分析

刘宛鑫1,王旭霞1,2,张文娟3,董瑞1,陈云1,张君1,2   

  1. (1.山东大学口腔医学院,山东 济南 250012;2.山东省口腔生物医学重点实验室,山东 济南 250012;3.山东省中医药大学附属医院 口腔科,山东 济南 250011)
  • 收稿日期:2013-04-15 修回日期:2013-05-03 出版日期:2013-10-10 发布日期:2013-10-10
  • 通讯作者: 张君,Tel:0531-88382070,E-mail:zhangj@sdu.edu.cn
  • 作者简介:刘宛鑫(1987-),女,在读硕士研究生,E-mail:452781001@qq.com
  • 基金资助:
    山东省自然科学基金(ZR2011HM036);山东省医药卫生科技发展计划项目(2011QZ023);济南市高校院所自主创新计划项目(201202032)

A three-dimensional finite element study on the reaction of different force values generated from maxillary protraction appliance

LIU Wan-xin1, WANG Xu-xia1,2, ZHANG Wen-juan3, DONG Rui1, CHEN Yun1, ZHANG Jun1,2   

  1. 1.School of Stomatology, Shandong University. Jinan 250012; 2.Shandong Provincial Key Laboratory of Oral Biomedicine. Jinan 250012; 3.Deportment of Stomatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine. Jinan 250011, Shandong Province, China
  • Received:2013-04-15 Revised:2013-05-03 Online:2013-10-10 Published:2013-10-10
  • Supported by:
    Supported by Natural Science Foundation of Shandong Province(ZR2011HM036), Medical Health and Technology Development Project(2011QZ023) of Shandong Province and Independent Innovation Project of Jinan College Institute(201202032).

摘要: 目的:通过建立包含颞下颌关节的颅颌面三维有限元模型,模拟前方牵引矫治器反作用力的加力方式,分析其在颞下颌关节区、颌骨的应力分布情况以及对各部位节点位移的影响。方法:选择1名健康男性受试者,通过CT扫描得到颅颌面的二维图像数据,借助Mimics、Magics、MSC等专用软件,采用连续、均质、线性、各向同性的线弹性材料,建立包括颞下颌关节和上、下颌骨的颅颌面三维有限元模型。然后在此基础上,根据前方牵引装置的反作用力原理建立加力模型,即采用与平面成后上方37°的施力方向,于下颌最底部加载3~6 N的力值,采用ANSYS10.0有限元分析软件,测定颞下颌关节区、颌骨的应力分布情况以及各部分位移的变化,并对结果进行分析、归纳和整理。结果:在同一角度下,关节窝和髁突头、颈部应力随加载力的增大而增大,下颌最大应力出现在节点力加载部位颏部,上颌最大应力出现在刚性固定面。同时该模型出现微小的位移变化,颅颌面各部分位移随节点力的增大而增大,颅上颌位移由颅底部和平面向颅顶部逐渐减小,下颌骨的位移由前部到后部逐渐减小,并出现顺时针方向旋转。结论:前方牵引矫治器对颞下颌关节区及颌骨产生反作用力的影响,且随着加载力的增大,其产生的反作用力和形变随之增大。颏部可能出现变形,下颌顺时针方向旋转。

关键词: 三维有限元, 颞下颌关节, 前方牵引, 反作用力

Abstract: PURPOSE: To analyse the stress distribution of temporomandibular joint(TMJ) and jaw and the displacement changes of each part from the reaction force generated from maxillary protraction appliance by establishing a craniomaxillofacial three-dimensional finite element model (3-D FEM). METHODS: A 3-D FEM of craniofacial structure including TMJ and jaw was established from a male healthy subject by using CT scan and Mimics, Magics, MSC and other data analysis softwares. It was based on the linear elastic materials which were continuous, homogeneous, and isotropic. Then the simulation model in craniofacial 3D structure model of maxillary protraction device was establish based on the reaction principle, and different forces from 3 N to 6 N with a 37° angle from the occlusal plane was loaded at the bottom of the lower jaw in order to measure and analyze changes of stress and displacement in TMJ and jaw with the finite element analysis software ANSYS10.0. RESULTS: At the same angle , the stress in articular fossa and the head and neck of condyle increased with the applied force. Maximum stress was located where the stress was loaded on the mandible and the rigid fixation of maxilla. Meanwhile, this model appeared slight variation of displacement which increased with loading force. The maxillary displacement from basis cranii and occlusal plane to the parietal decreased gradually. Moreover, the mandibular displacement from the front to the rear was gradually reduced, and clockwise rotation was appeared. CONCLUSIONS: The results indicate that maxillary protraction appliance has reaction force on TMJ and jaw. With increasing of loading forces, reaction forces and deformation increase. At the same time, chin deformation may occur and the mandible has clockwise rotation.

Key words: 3-D FEM, TMJ, Protraction, Reaction force

中图分类号: