上海口腔医学 ›› 2025, Vol. 34 ›› Issue (6): 617-621.doi: 10.19439/j.sjos.2025.06.010

• 论著 • 上一篇    下一篇

基于CAD/CAM的全瓷高嵌体修复牙体缺损失败风险的列线图模型构建与验证

雷彦华, 郑海霞   

  1. 榆林市第一医院 口腔科, 陕西 榆林 719000
  • 收稿日期:2025-02-21 修回日期:2025-04-08 发布日期:2025-12-30
  • 通讯作者: 郑海霞,E-mail:1245720519@qq.com
  • 作者简介:雷彦华(1990-),女,本科,主治医师,E-mail:18717634656@163.com
  • 基金资助:
    陕西省重点研发计划项目(2022SF-096)

Construction and verification of CAD/CAM-based nomogram model for the failure risk of dental defect restoration with all-ceramic onlay

Lei Yanhua, Zheng Haixia   

  1. Department of Stomatology, Yulin First Hospital. Yulin 719000, Shaanxi Province, China
  • Received:2025-02-21 Revised:2025-04-08 Published:2025-12-30

摘要: 目的:基于列线图模型分析CAD/CAM系统设计全瓷高嵌体修复牙体缺损后失败的风险因素。方法:收集2019年1月—2021年1月榆林市第一医院收治的236例牙体缺损患者的临床资料。患者均进行基于CAD/CAM系统设计的全瓷高嵌体修复,随访3年,根据随访结果分为成功组(n=169)和失败组(n=67)。收集患者一般资料,检测治疗前的咬合力、牙槽骨密度和牙周指标[菌斑指数 (plaque index,PLI)、龈沟出血指数 (sulcus bleeding index,SBI)和探诊深度 (probe depth, PD)]。通过logistic回归分析筛选CAD/CAM系统设计全瓷高嵌体修复牙体缺损后失败的风险因素,构建列线图预测模型,评价模型的拟合效果。结果:Logistic回归分析显示,年龄较大、合并糖尿病、吸烟史、磨牙、使用CEREC Blocs瓷块、多面洞缺损、修复后牙列不完整、治疗前咬合力大、牙槽骨密度低,且PLI、SBI和PD高的患者,治疗失败风险更高(P<0.05)。校准曲线显示,该模型预测的校正曲线趋近于理想曲线。结论:糖尿病史、吸烟史、年龄、缺损牙及牙周健康状况均是影响CAD/CAM系统设计全瓷高嵌体修复牙体缺损后失败的重要因素。

关键词: CAD/CAM系统, 全瓷高嵌体, 牙体缺损, 多因素分析, 列线图模型

Abstract: PURPOSE: To analyze the risk factors for the failure of CAD/CAM system-designed all-ceramic onlays in repairing dental defects using the nomogram model. METHODS: Clinical data from 236 patients with dental defects in Yulin First Hospital from January 2019 to January 2021 was conducted. All patients received all-ceramic onlay restorations designed by CAD/CAM system and were followed up for 3 years. According to the follow-up results, they were divided into successful group(n=169) and failed group(n=67). Basic details were collected for each group, including gender, age, smoking history, tooth type, type of tooth defect, dental arch defect status, root canal treatment status, type of ceramic block, measurements of pre-treatment occlusal force, alveolar bone density and periodontal indices [plaque index (PLI), sulcus bleeding index(SBI) and probing depth(PD)]. Logistic regression analysis was used to identify the risk factors for failure after all-ceramic onlay restoration, the prediction model of nomogram was constructed and the fitting effect of the model was evaluated. RESULTS: Logistic regression analysis indicated that older age, comorbid diabetes, smoking history, molar teeth, use of CEREC Blocs ceramic, multi-surface cavity defects, incomplete dental arch post-restoration, high pre-treatment occlusal force, low alveolar bone density, high values of PLI, SBI and PD were related to an increased likelihood of treatment failure(P<0.05). The calibration curve for this predictive model approximates the ideal curve. CONCLUSIONS: Age, history of diabetes, smoking history, condition of the defective tooth and periodontal health status are significant factors influencing the failure of CAD/CAM system-designed all-ceramic onlay restorations for dental defects.

Key words: CAD/CAM system, All-ceramic onlay, Dental defect, Multifactorial analysis, Nomogram model

中图分类号: