[1] Papapanou PN, Susin C.Periodontitis epidemiology: is periodontitis under-recognized, over-diagnosed, or both?[J]. Periodontol 2000, 2017, 75(1): 45-51. [2] Slots J.Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23. [3] Cardoso EM, Reis C, Manzanares-Céspedes MC.Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases[J]. Postgrad Med, 2018, 130(1): 98-104. [4] Bartold PM, Gronthos S, Ivanovski S, et al.Tissue engineered periodontal products[J]. J Periodontal Res, 2016, 51(1): 1-15. [5] Chen FM, Jin Y.Periodontal tissue engineering and regeneration: current approaches and expanding opportunities[J]. Tissue Eng Part B Rev, 2010, 16(2): 219-255. [6] Park CH, Kim KH, Lee YM, et al.Advanced engineering strategies for periodontal complex regeneration[J]. Materials (Basel), 2016, 9(1): E57. [7] Seo BM, Miura M, Gronthos S, et al.Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429): 149-155. [8] Ding G, Liu Y, Wang W, et al.Allogeneic periodontal ligament stem cell therapy for periodontitis in swine[J]. Stem Cells, 2010, 28(10): 1829-1838. [9] Akizuki T, Oda S, Komaki M, et al.Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs[J]. J Periodontal Res, 2005, 40(3): 245-251. [10] Du L, Feng R, Ge S.PTH/SDF-1α cotherapy promotes proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells[J]. Cell Prolif, 2016, 49(5): 599-608. [11] Yap MKK, Misuan N.Exendin-4 from Heloderma suspectum venom: From discovery to its latest application as type II diabetes combatant[J]. Basic Clin Pharmacol Toxicol, 2019, 124(5): 513-517. [12] Sharma D, Verma S, Vaidya S, et al.Recent updates on GLP-1 agonists: current advancements & challenges[J]. Biomed Pharmacother, 2018, 108: 952-962. [13] Zhang Y, Chen S, Liu B, et al.Exendin-4 promotes proliferation of adipose-derived stem cells through ERK and JNK signaling pathways[J]. In Vitro Cell Dev Bio Anim, 2016, 52(5): 598-606. [14] Zhou H, Li D, Shi C, et al.Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro [J]. Sci Rep, 2015, 5: 12898. [15] Seo E, Lim JS, Jun JB, et al.Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing[J]. J Trans Med, 2017, 15(1): 35. [16] Meng J, Ma X, Wang N, et al.Activation of GLP-1 receptor promotes bone marrow stromal cell osteogenic differentiation through β-Catenin[J]. Stem Cell Reports, 2016, 6(4): 579-591. [17] Feng Y, Su L, Zhong X, et al.Exendin-4 promotes proliferation and differentiation of MC3T3-E1 osteoblasts by MAPK activation[J]. J Mol Endocrinol, 2016, 56(3): 189-199. [18] Luciani P, Fibbi B, Mazzanti B, et al.The effects of Exendin-4 on bone marrow-derived mesenchymal cells[J]. Endocrine, 2018, 60(3): 423-434. [19] Drucker DJ, Nauck MA.The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J]. Lancet, 2006, 368(9548): 1696-1705. [20] He J, Wang C, Sun Y, et al.Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress[J]. Int J Mol Med, 2016, 37(4): 889-900. [21] Kim JY, Lee SK, Jo KJ, et al.Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes[J]. Life Sci, 2013, 92(10): 533-540. [22] Guo Z, Chen R, Zhang F, et al.Exendin-4 relieves the inhibitory effects of high glucose on the proliferation and osteoblastic differentiation of periodontal ligament stem cells[J]. Arch Oral Biol, 2018, 91(1): 9-16. |