[1] 褚凤清, 王国平, 夏露, 等. 变形链球菌对牙科合金耐蚀性的影响 [J]. 口腔医学研究, 2011, 27(10): 859-861. [2] 陆春慧, 郑元俐. 牙科金属材料的微生物腐蚀 [J]. 国际口腔医学杂志, 2010, 37(1): 89-93,97. [3] Williams RL,Williams DF.Albumin adsorption on metal surfaces [J]. Biomaterials, 1988, 9(3): 206-212. [4] Norde W, Lyklema J. Why proteins prefer interfaces [J]. J Biomater Sci Polym Ed, 1991, 2(3): 183-202. [5] Clark GC, Williams DF. The effects of proteins on metallic corrosion [J]. J Biomed Mater Res, 1982, 16(2): 125-134. [6] 刘成龙, 王猛, 张春艳, 等. 蛋白质作用下医用金属材料的腐蚀行为研究进展 [J]. 中国腐蚀与防护学报, 2011, 31(1): 10-17. [7] 陈艳, 江明锋, 叶煜辉, 等. 溶菌酶的研究进展 [J]. 生物学杂志, 2009, 26(2): 64-66. [8] Souza JC, Ponthiaux P, Henriques M, et al. Corrosion behaviour of titanium in the presence of Streptococcus mutans[J]. J Dent, 2013, 41(6): 528-534. [9] Hedberg Y, Wang X, Hedberg J, et al. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release[J]. J Mater Sci Mater Med, 2013, 24(4): 1015-1033. [10] Lobo MM, Goncalves RB, Ambrosano GM, et al. Chemical or microbiological models of secondary caries development around different dental restorative materials [J]. J Biomed Mater Res B Appl Biomater, 2005, 74(2): 725-731. [11] Bilhan H, Bilgin T, Cakir AF, et al. The effect of mucine, IgA, urea, and lysozyme on the corrosion behavior of various non-precious dental alloys and pure titanium in artificial saliva [J]. J Biomater Appl, 2007, 22(3): 197-221. [12] Oliveira NT, Guastaldi AC. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications [J]. Acta Biomater, 2009, 5(1): 399-405. [13] Hsu RWW, Yang CC, Huang CA, et al. Electrochemical corrosion studies on Co-Cr-Mo implant alloy in biological solutions[J]. Mater Chem Phys, 2005, 93(2-3): 531-538. [14] Saji VS, Choe HC. Electrochemical behavior of Co-Cr and Ni-Cr dental cast alloys [J]. Trans Nonferrous Met Soc China, 2009, 19(4): 785-790. [15] 曹楚南. 腐蚀电化学原理 [M]. 第2版. 北京: 化学工业出版社, 2004: 318-322. [16] Matkovi■ T, Matkovi■ P, Malina J. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys[J]. J Alloys Compd, 2004, 366(1-2): 293-297. [17] Ameer MA, Khamis E, Al-Motlaq M. Electrochemical behaviour of recasting Ni-Cr and Co-Cr non-precious dental alloys [J]. Corrosion Sci, 2004, 46(11): 2825-2836. [18] Auschill TM, Arweiler NB, Brecx M, et al. The effect of dental restorative materials on dental biofilm [J]. Eur J Oral Sci, 2002, 110(1): 48-53. [19] Torres Bautista BE, Carvalho ML, Seyeux A, et al. Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater [J]. Bioelectrochemistry, 2014, 97: 34-42. [20] Zhang C, Sun X, Hou X, et al. The corrosion resistance of composite arch wire laser-welded by NiTi shape memory alloy and stainless steel wires with Cu interlayer in artificial saliva with protein [J]. Int J Med Sci, 2013, 10(8): 1068-1072. [21] 陈志红, 刘丽, 毛英杰. 牙科合金腐蚀行为的电化学研究及影响因素 [J]. 口腔医学, 2006, 26(5): 388-390. [22] Chang BY, Park SM. Electrochemical impedance spectroscopy [J]. Annu Rev Anal Chem (Palo Alto Calif), 2010, 3: 207-229. [23] 胡滨, 张富强. 变形链球菌对镍铬合金耐蚀性能的影响 [J]. 上海交通大学学报(医学版), 2006, 26(10): 1093-1095. [24] Lundin M, Hedberg Y, Jiang T, et al. Adsorption and protein-induced metal release from chromium metal and stainless steel[J]. J Colloid Interface Sci, 2012, 366(1): 155-164. [25] Hedberg YS, Killian MS, Blomberg E, et al. Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy[J]. Langmuir, 2012, 28(47): 16306-16317. [26] Herting G, Wallinder IO, Leygraf C. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium-a comparison[J]. J Environ Monit,2008,10(9): 1092-1098. [27] Karimi S, Alfantazi AM. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions [J]. Mater Sci Eng C Mater Biol Appl, 2014, 40: 435-444. |